Citation: |
[1] | |
[2] |
A. Benkirane and M. S. Vally, An existence result for nonlinear elliptic equations in Musielak-Orlicz-Sobolev spaces, Bulletin of the Belgian Mathematical Society, 20 (2013), 1-187. |
[3] |
S. Byun, J. Ok and L. Wang, $W^{1,p(\cdot)}$-Regularity for elliptic eqautions with measurable coefficients in nonsmooth domains, Communications in Mathematical Physics, 329 (2014), 937-958.doi: 10.1007/s00220-014-1962-8. |
[4] |
F. Cammaroto and L. Vilasi, Multiple solutions for a Kirchhoff-type problem involving the $p(x)$-Laplacian operator, Nonlinear Analysis, 74 (2011), 1841-1852.doi: 10.1016/j.na.2010.10.057. |
[5] |
T. K. Donaldson and N. S. Trudinger, Orlicz-Sobolev spaces and imbedding theorems, J. Func. Anal., 8 (1971), 52-75. |
[6] |
X. Fan, Boundary trace embedding theorems for variable exponent Sobolev spaces, J. Math. Anal. Appl., 339 (2008), 1395-1412.doi: 10.1016/j.jmaa.2007.08.003. |
[7] |
X. Fan and C. Guan, Uniform convexity of Musielak-Orlicz-Sobolev spaces and applications, Nonlinear Analysis, 73 (2010), 163-175.doi: 10.1016/j.na.2010.03.010. |
[8] |
X. Fan, Differential equations of divergence form in Musielak-Sobolev spaces and sub-supersolution method, J. Math. Anal. Appl., 386 (2012), 593-604.doi: 10.1016/j.jmaa.2011.08.022. |
[9] |
X. Fan, An imbedding theorem for Musielak-Sobolev spaces, Nonlinear Analysis, 75 (2012), 1959-1971.doi: 10.1016/j.na.2011.09.045. |
[10] |
X. Fan and D. Zhao, On the generalized Orlicz-Sobolev space $W^{k,p(x)}(\Omega)$, J. Gansu Educ. College, 12 (1998), 1-6. |
[11] |
M. G. Huidobro, V. K. Le, R. Manásevich and K. Schmitt, On principle eigenvalues for quasilinear elliptic differential operators: an Orlicz-Sobolev space setting, Nonlinear differ. equ. appl., 6 (1999), 207-225.doi: 10.1007/s000300050073. |
[12] |
D. Liu and P. Zhao, Solutions for a quasilinear elliptic equation in Musielak-Sobolev spaces, Nonlinear Analysis: RWA, 26 (2015), 315-329.doi: 10.1016/j.nonrwa.2015.06.002. |
[13] |
J. Musielak, Orlicz spaces and modular spaces, in Lecture Notes in Math., volume 1034}, Springer-Verlag, Berlin, 1983. |