\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global attractors for nonlinear viscoelastic equations with memory

Abstract Related Papers Cited by
  • We study the asymptotic properties of the semigroup $S(t)$ arising from the nonlinear viscoelastic equation with hereditary memory on a bounded three-dimensional domain \begin{eqnarray} |\partial_t u|^\rho \partial_{t t} u-\Delta \partial_{t t} u-\Delta \partial_t u\\ -\Big(1+\int_0^\infty \mu(s)\Delta s \Big)\Delta u +\int_0^\infty \mu(s)\Delta u(t-s)\Delta s +f(u)=h \end{eqnarray} written in the past history framework of Dafermos [10]. We establish the existence of the global attractor of optimal regularity for $S(t)$ when $\rho\in [0,4)$ and $f$ has polynomial growth of (at most) critical order 5.
    Mathematics Subject Classification: Primary: 35B41, 45G10; Secondary: 35L72.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. O. Araujo, T. F. Ma and Y. Qin, Long-time behavior of a quasilinear viscoelastic equation with past history, J. Differential Equations, 254 (2013), 4066-4087.doi: 10.1016/j.jde.2013.02.010.

    [2]

    A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam, 1992.

    [3]

    M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. Ferreira, Existence and uniform decay for a non-linear viscoelastic equation with strong damping, Math. Methods Appl. Sci., 24 (2001), 1043-1053.doi: 10.1002/mma.250.

    [4]

    T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, Oxford University Press, New York, 1998.

    [5]

    V. V. Chepyzhov and V. Pata, Some remarks on stability of semigroups arising from linear viscoelasticity, Asymptot. Anal., 46 (2006), 251-273.

    [6]

    V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, Amer. Math. Soc., Providence, 2002.

    [7]

    M. Conti, E. M. Marchini and V. Pata, A well posedness result for nonlinear viscoelastic equations with memory, Nonlinear Anal., 94 (2014), 206-216.doi: 10.1016/j.na.2013.08.015.

    [8]

    M. Conti and V. Pata, Weakly dissipative semilinear equations of viscoelasticity, Commun. Pure Appl. Anal., 4 (2005), 705-720.doi: 10.3934/cpaa.2005.4.705.

    [9]

    M. Conti and V. Pata, On the regularity of global attractors, Discrete Contin. Dyn. Syst., 25 (2009), 1209-1217.doi: 10.3934/dcds.2009.25.1209.

    [10]

    C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Ration. Mech. Anal., 37 (1970), 297-308.

    [11]

    S. Gatti, A. Miranville, V. Pata and S. Zelik, Attractors for semilinear equations of viscoelasticity with very low dissipation, Rocky Mountain J. Math., 38 (2008), 1117-1138.doi: 10.1216/RMJ-2008-38-4-1117.

    [12]

    M. Grasselli and V. Pata, Uniform attractors of nonautonomous dynamical systems with memory, in Evolution Equations, Semigroups and Functional Analysis (A. Lorenzi and B. Ruf, Eds.) pp. 155-178, Progr. Nonlinear Differential Equations Appl. no. 50, Birkhäuser, Basel, 2002.

    [13]

    J. K. Hale, Asymptotic Behavior of Dissipative Systems, Amer. Math. Soc. , Providence, 1988.

    [14]

    X. Han and M. Wang, General decay of energy for a viscoelastic equation with nonlinear damping, Math. Methods Appl. Sci., 32 (2009), 346-358.doi: 10.1002/mma.1041.

    [15]

    X. Han and M. Wang, Global existence and uniform decay for a nonlinear viscoelastic equation with damping, Nonlinear Anal., 70 (2009), 3090-3098.doi: 10.1016/j.na.2008.04.011.

    [16]

    A. Haraux, Systèmes dynamiques dissipatifs et applications, Masson, Paris, 1991.

    [17]

    A. Haraux and M. A. Jendoubi, Convergence of bounded weak solutions of the wave equation with dissipation and analytic nonlinearity, Calc. Var. Partial Differential Equations, 9 (1999), 95-124.doi: 10.1007/s005260050133.

    [18]

    W. Liu, Uniform decay of solutions for a quasilinear system of viscoelastic equations, Nonlinear Anal., 71 (2009), 2257-2267.doi: 10.1016/j.na.2009.01.060.

    [19]

    W. Liu, General decay and blow-up of solution for a quasilinear viscoelastic problem with nonlinear source, Nonlinear Anal., 73 (2010), 1890-1904.doi: 10.1016/j.na.2010.05.023.

    [20]

    A. H. Love, A Treatise on Mathematical Theory of Elasticity, Dover, New York, 1944.

    [21]

    S. A. Messaoudi and M. I. Mustafa, A general stability result for a quasilinear wave equation with memory, Nonlinear Anal. Real World Appl., 14 (2013), 1854-1864.doi: 10.1016/j.nonrwa.2012.12.002.

    [22]

    S. A. Messaoudi and N. -e. Tatar, Global existence and uniform stability of solutions for a quasilinear viscoelastic problem, Math. Methods Appl. Sci., 30 (2007), 665-680.doi: 10.1002/mma.804.

    [23]

    S. A. Messaoudi and N. -e. Tatar, Exponential and polynomial decay for a quasilinear viscoelastic equation, Nonlinear Anal., 68 (2008), 785-793.doi: 10.1016/j.na.2006.11.036.

    [24]

    S. A. Messaoudi and N. -e. Tatar, Exponential decay for a quasilinear viscoelastic equation, Math. Nachr., 282 (2009), 1443-1450.doi: 10.1002/mana.200610800.

    [25]

    J. Y. Park and S. H. Park, General decay for quasilinear viscoelastic equations with nonlinear weak damping, J. Math. Phys., 50 (2009), 083505, 10 pp.doi: 10.1063/1.3187780.

    [26]

    V. Pata and A. Zucchi, Attractors for a damped hyperbolic equation with linear memory, Adv. Math. Sci. Appl., 11 (2001), 505-529.

    [27]

    R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1988.doi: 10.1007/978-1-4684-0313-8.

    [28]

    S. -T. Wu, Arbitrary decays for a viscoelastic equation, Bound. Value Probl., 28 (2011), 14 pp.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(219) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return