September  2016, 15(5): 1893-1913. doi: 10.3934/cpaa.2016021

Global attractors for nonlinear viscoelastic equations with memory

1. 

Dipartimento di Matematica "F.Brioschi", Politecnico di Milano, I-20133 Milano

2. 

Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy

Published  July 2016

We study the asymptotic properties of the semigroup $S(t)$ arising from the nonlinear viscoelastic equation with hereditary memory on a bounded three-dimensional domain \begin{eqnarray} |\partial_t u|^\rho \partial_{t t} u-\Delta \partial_{t t} u-\Delta \partial_t u\\ -\Big(1+\int_0^\infty \mu(s)\Delta s \Big)\Delta u +\int_0^\infty \mu(s)\Delta u(t-s)\Delta s +f(u)=h \end{eqnarray} written in the past history framework of Dafermos [10]. We establish the existence of the global attractor of optimal regularity for $S(t)$ when $\rho\in [0,4)$ and $f$ has polynomial growth of (at most) critical order 5.
Citation: Monica Conti, Elsa M. Marchini, V. Pata. Global attractors for nonlinear viscoelastic equations with memory. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1893-1913. doi: 10.3934/cpaa.2016021
References:
[1]

R. O. Araujo, T. F. Ma and Y. Qin, Long-time behavior of a quasilinear viscoelastic equation with past history, J. Differential Equations, 254 (2013), 4066-4087. doi: 10.1016/j.jde.2013.02.010.  Google Scholar

[2]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam, 1992.  Google Scholar

[3]

M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. Ferreira, Existence and uniform decay for a non-linear viscoelastic equation with strong damping, Math. Methods Appl. Sci., 24 (2001), 1043-1053. doi: 10.1002/mma.250.  Google Scholar

[4]

T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, Oxford University Press, New York, 1998.  Google Scholar

[5]

V. V. Chepyzhov and V. Pata, Some remarks on stability of semigroups arising from linear viscoelasticity, Asymptot. Anal., 46 (2006), 251-273.  Google Scholar

[6]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, Amer. Math. Soc., Providence, 2002.  Google Scholar

[7]

M. Conti, E. M. Marchini and V. Pata, A well posedness result for nonlinear viscoelastic equations with memory, Nonlinear Anal., 94 (2014), 206-216. doi: 10.1016/j.na.2013.08.015.  Google Scholar

[8]

M. Conti and V. Pata, Weakly dissipative semilinear equations of viscoelasticity, Commun. Pure Appl. Anal., 4 (2005), 705-720. doi: 10.3934/cpaa.2005.4.705.  Google Scholar

[9]

M. Conti and V. Pata, On the regularity of global attractors, Discrete Contin. Dyn. Syst., 25 (2009), 1209-1217. doi: 10.3934/dcds.2009.25.1209.  Google Scholar

[10]

C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Ration. Mech. Anal., 37 (1970), 297-308.  Google Scholar

[11]

S. Gatti, A. Miranville, V. Pata and S. Zelik, Attractors for semilinear equations of viscoelasticity with very low dissipation, Rocky Mountain J. Math., 38 (2008), 1117-1138. doi: 10.1216/RMJ-2008-38-4-1117.  Google Scholar

[12]

M. Grasselli and V. Pata, Uniform attractors of nonautonomous dynamical systems with memory, in Evolution Equations, Semigroups and Functional Analysis (A. Lorenzi and B. Ruf, Eds.) pp. 155-178, Progr. Nonlinear Differential Equations Appl. no. 50, Birkhäuser, Basel, 2002.  Google Scholar

[13]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Amer. Math. Soc. , Providence, 1988.  Google Scholar

[14]

X. Han and M. Wang, General decay of energy for a viscoelastic equation with nonlinear damping, Math. Methods Appl. Sci., 32 (2009), 346-358. doi: 10.1002/mma.1041.  Google Scholar

[15]

X. Han and M. Wang, Global existence and uniform decay for a nonlinear viscoelastic equation with damping, Nonlinear Anal., 70 (2009), 3090-3098. doi: 10.1016/j.na.2008.04.011.  Google Scholar

[16]

A. Haraux, Systèmes dynamiques dissipatifs et applications, Masson, Paris, 1991.  Google Scholar

[17]

A. Haraux and M. A. Jendoubi, Convergence of bounded weak solutions of the wave equation with dissipation and analytic nonlinearity, Calc. Var. Partial Differential Equations, 9 (1999), 95-124. doi: 10.1007/s005260050133.  Google Scholar

[18]

W. Liu, Uniform decay of solutions for a quasilinear system of viscoelastic equations, Nonlinear Anal., 71 (2009), 2257-2267. doi: 10.1016/j.na.2009.01.060.  Google Scholar

[19]

W. Liu, General decay and blow-up of solution for a quasilinear viscoelastic problem with nonlinear source, Nonlinear Anal., 73 (2010), 1890-1904. doi: 10.1016/j.na.2010.05.023.  Google Scholar

[20]

A. H. Love, A Treatise on Mathematical Theory of Elasticity, Dover, New York, 1944.  Google Scholar

[21]

S. A. Messaoudi and M. I. Mustafa, A general stability result for a quasilinear wave equation with memory, Nonlinear Anal. Real World Appl., 14 (2013), 1854-1864. doi: 10.1016/j.nonrwa.2012.12.002.  Google Scholar

[22]

S. A. Messaoudi and N. -e. Tatar, Global existence and uniform stability of solutions for a quasilinear viscoelastic problem, Math. Methods Appl. Sci., 30 (2007), 665-680. doi: 10.1002/mma.804.  Google Scholar

[23]

S. A. Messaoudi and N. -e. Tatar, Exponential and polynomial decay for a quasilinear viscoelastic equation, Nonlinear Anal., 68 (2008), 785-793. doi: 10.1016/j.na.2006.11.036.  Google Scholar

[24]

S. A. Messaoudi and N. -e. Tatar, Exponential decay for a quasilinear viscoelastic equation, Math. Nachr., 282 (2009), 1443-1450. doi: 10.1002/mana.200610800.  Google Scholar

[25]

J. Y. Park and S. H. Park, General decay for quasilinear viscoelastic equations with nonlinear weak damping, J. Math. Phys., 50 (2009), 083505, 10 pp. doi: 10.1063/1.3187780.  Google Scholar

[26]

V. Pata and A. Zucchi, Attractors for a damped hyperbolic equation with linear memory, Adv. Math. Sci. Appl., 11 (2001), 505-529.  Google Scholar

[27]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1988. doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[28]

S. -T. Wu, Arbitrary decays for a viscoelastic equation, Bound. Value Probl., 28 (2011), 14 pp.  Google Scholar

show all references

References:
[1]

R. O. Araujo, T. F. Ma and Y. Qin, Long-time behavior of a quasilinear viscoelastic equation with past history, J. Differential Equations, 254 (2013), 4066-4087. doi: 10.1016/j.jde.2013.02.010.  Google Scholar

[2]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam, 1992.  Google Scholar

[3]

M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. Ferreira, Existence and uniform decay for a non-linear viscoelastic equation with strong damping, Math. Methods Appl. Sci., 24 (2001), 1043-1053. doi: 10.1002/mma.250.  Google Scholar

[4]

T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, Oxford University Press, New York, 1998.  Google Scholar

[5]

V. V. Chepyzhov and V. Pata, Some remarks on stability of semigroups arising from linear viscoelasticity, Asymptot. Anal., 46 (2006), 251-273.  Google Scholar

[6]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, Amer. Math. Soc., Providence, 2002.  Google Scholar

[7]

M. Conti, E. M. Marchini and V. Pata, A well posedness result for nonlinear viscoelastic equations with memory, Nonlinear Anal., 94 (2014), 206-216. doi: 10.1016/j.na.2013.08.015.  Google Scholar

[8]

M. Conti and V. Pata, Weakly dissipative semilinear equations of viscoelasticity, Commun. Pure Appl. Anal., 4 (2005), 705-720. doi: 10.3934/cpaa.2005.4.705.  Google Scholar

[9]

M. Conti and V. Pata, On the regularity of global attractors, Discrete Contin. Dyn. Syst., 25 (2009), 1209-1217. doi: 10.3934/dcds.2009.25.1209.  Google Scholar

[10]

C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Ration. Mech. Anal., 37 (1970), 297-308.  Google Scholar

[11]

S. Gatti, A. Miranville, V. Pata and S. Zelik, Attractors for semilinear equations of viscoelasticity with very low dissipation, Rocky Mountain J. Math., 38 (2008), 1117-1138. doi: 10.1216/RMJ-2008-38-4-1117.  Google Scholar

[12]

M. Grasselli and V. Pata, Uniform attractors of nonautonomous dynamical systems with memory, in Evolution Equations, Semigroups and Functional Analysis (A. Lorenzi and B. Ruf, Eds.) pp. 155-178, Progr. Nonlinear Differential Equations Appl. no. 50, Birkhäuser, Basel, 2002.  Google Scholar

[13]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Amer. Math. Soc. , Providence, 1988.  Google Scholar

[14]

X. Han and M. Wang, General decay of energy for a viscoelastic equation with nonlinear damping, Math. Methods Appl. Sci., 32 (2009), 346-358. doi: 10.1002/mma.1041.  Google Scholar

[15]

X. Han and M. Wang, Global existence and uniform decay for a nonlinear viscoelastic equation with damping, Nonlinear Anal., 70 (2009), 3090-3098. doi: 10.1016/j.na.2008.04.011.  Google Scholar

[16]

A. Haraux, Systèmes dynamiques dissipatifs et applications, Masson, Paris, 1991.  Google Scholar

[17]

A. Haraux and M. A. Jendoubi, Convergence of bounded weak solutions of the wave equation with dissipation and analytic nonlinearity, Calc. Var. Partial Differential Equations, 9 (1999), 95-124. doi: 10.1007/s005260050133.  Google Scholar

[18]

W. Liu, Uniform decay of solutions for a quasilinear system of viscoelastic equations, Nonlinear Anal., 71 (2009), 2257-2267. doi: 10.1016/j.na.2009.01.060.  Google Scholar

[19]

W. Liu, General decay and blow-up of solution for a quasilinear viscoelastic problem with nonlinear source, Nonlinear Anal., 73 (2010), 1890-1904. doi: 10.1016/j.na.2010.05.023.  Google Scholar

[20]

A. H. Love, A Treatise on Mathematical Theory of Elasticity, Dover, New York, 1944.  Google Scholar

[21]

S. A. Messaoudi and M. I. Mustafa, A general stability result for a quasilinear wave equation with memory, Nonlinear Anal. Real World Appl., 14 (2013), 1854-1864. doi: 10.1016/j.nonrwa.2012.12.002.  Google Scholar

[22]

S. A. Messaoudi and N. -e. Tatar, Global existence and uniform stability of solutions for a quasilinear viscoelastic problem, Math. Methods Appl. Sci., 30 (2007), 665-680. doi: 10.1002/mma.804.  Google Scholar

[23]

S. A. Messaoudi and N. -e. Tatar, Exponential and polynomial decay for a quasilinear viscoelastic equation, Nonlinear Anal., 68 (2008), 785-793. doi: 10.1016/j.na.2006.11.036.  Google Scholar

[24]

S. A. Messaoudi and N. -e. Tatar, Exponential decay for a quasilinear viscoelastic equation, Math. Nachr., 282 (2009), 1443-1450. doi: 10.1002/mana.200610800.  Google Scholar

[25]

J. Y. Park and S. H. Park, General decay for quasilinear viscoelastic equations with nonlinear weak damping, J. Math. Phys., 50 (2009), 083505, 10 pp. doi: 10.1063/1.3187780.  Google Scholar

[26]

V. Pata and A. Zucchi, Attractors for a damped hyperbolic equation with linear memory, Adv. Math. Sci. Appl., 11 (2001), 505-529.  Google Scholar

[27]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1988. doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[28]

S. -T. Wu, Arbitrary decays for a viscoelastic equation, Bound. Value Probl., 28 (2011), 14 pp.  Google Scholar

[1]

Moncef Aouadi, Alain Miranville. Quasi-stability and global attractor in nonlinear thermoelastic diffusion plate with memory. Evolution Equations & Control Theory, 2015, 4 (3) : 241-263. doi: 10.3934/eect.2015.4.241

[2]

Vladimir E. Fedorov, Natalia D. Ivanova. Identification problem for a degenerate evolution equation with overdetermination on the solution semigroup kernel. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 687-696. doi: 10.3934/dcdss.2016022

[3]

Antonio Segatti. Global attractor for a class of doubly nonlinear abstract evolution equations. Discrete & Continuous Dynamical Systems, 2006, 14 (4) : 801-820. doi: 10.3934/dcds.2006.14.801

[4]

Francesca Bucci, Igor Chueshov, Irena Lasiecka. Global attractor for a composite system of nonlinear wave and plate equations. Communications on Pure & Applied Analysis, 2007, 6 (1) : 113-140. doi: 10.3934/cpaa.2007.6.113

[5]

Olivier Goubet, Ezzeddine Zahrouni. Global attractor for damped forced nonlinear logarithmic Schrödinger equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (8) : 2933-2946. doi: 10.3934/dcdss.2020393

[6]

Nobuyuki Kenmochi, Noriaki Yamazaki. Global attractor of the multivalued semigroup associated with a phase-field model of grain boundary motion with constraint. Conference Publications, 2011, 2011 (Special) : 824-833. doi: 10.3934/proc.2011.2011.824

[7]

Jorge A. Esquivel-Avila. Nonexistence of global solutions for a class of viscoelastic wave equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (12) : 4213-4230. doi: 10.3934/dcdss.2021134

[8]

Brahim Alouini. Finite dimensional global attractor for a class of two-coupled nonlinear fractional Schrödinger equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021013

[9]

Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1801-1816. doi: 10.3934/dcdsb.2017107

[10]

Kazuhiro Ishige, Tatsuki Kawakami, Kanako Kobayashi. Global solutions for a nonlinear integral equation with a generalized heat kernel. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 767-783. doi: 10.3934/dcdss.2014.7.767

[11]

Eduardo Liz, Gergely Röst. On the global attractor of delay differential equations with unimodal feedback. Discrete & Continuous Dynamical Systems, 2009, 24 (4) : 1215-1224. doi: 10.3934/dcds.2009.24.1215

[12]

Hiroshi Matano, Ken-Ichi Nakamura. The global attractor of semilinear parabolic equations on $S^1$. Discrete & Continuous Dynamical Systems, 1997, 3 (1) : 1-24. doi: 10.3934/dcds.1997.3.1

[13]

Yuncheng You. Global attractor of the Gray-Scott equations. Communications on Pure & Applied Analysis, 2008, 7 (4) : 947-970. doi: 10.3934/cpaa.2008.7.947

[14]

J. W. Neuberger. How to distinguish a local semigroup from a global semigroup. Discrete & Continuous Dynamical Systems, 2013, 33 (11&12) : 5293-5303. doi: 10.3934/dcds.2013.33.5293

[15]

Xin-Guang Yang, Jing Zhang, Shu Wang. Stability and dynamics of a weak viscoelastic system with memory and nonlinear time-varying delay. Discrete & Continuous Dynamical Systems, 2020, 40 (3) : 1493-1515. doi: 10.3934/dcds.2020084

[16]

V. V. Chepyzhov, A. Miranville. Trajectory and global attractors of dissipative hyperbolic equations with memory. Communications on Pure & Applied Analysis, 2005, 4 (1) : 115-142. doi: 10.3934/cpaa.2005.4.115

[17]

Tingting Liu, Qiaozhen Ma. Time-dependent asymptotic behavior of the solution for plate equations with linear memory. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4595-4616. doi: 10.3934/dcdsb.2018178

[18]

Wided Kechiche. Regularity of the global attractor for a nonlinear Schrödinger equation with a point defect. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1233-1252. doi: 10.3934/cpaa.2017060

[19]

Wenxian Shen. Global attractor and rotation number of a class of nonlinear noisy oscillators. Discrete & Continuous Dynamical Systems, 2007, 18 (2&3) : 597-611. doi: 10.3934/dcds.2007.18.597

[20]

Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (170)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]