November  2016, 15(6): 1975-2005. doi: 10.3934/cpaa.2016024

Optimal power for an elliptic equation related to some Caffarelli-Kohn-Nirenberg inequalities

1. 

Instituto de Investigaciones Matemáticas Luis Santaló and CONICET, Facultad de Ciencias Exactas y Naturales, Pabellón I, Ciudad Universitaria, 1428, Argentina

Received  November 2012 Revised  May 2013 Published  September 2016

In this paper we analyze the following elliptic problem related to some Caffarelli-Kohn-Nirenberg inequalities: \begin{eqnarray} -div(|x|^{-2\gamma}\nabla u)-\lambda \frac{u}{|x|^{2(\gamma+1)}}=|\nabla u|^p|x|^{-\gamma p}+cf,\; u>0\; \mbox{ in }\; \Omega, \qquad u_{|\partial \Omega}\equiv0, \end{eqnarray} where $\Omega \subset R^N$ is a domain such that $0\in\Omega$, $N\geq 3$, and $c, \lambda, \gamma, p $ are positive constants verifying $0 < \lambda \leq \Lambda_{N,\gamma}=\left(\frac{N-2(\gamma+1)}{2}\right)^{2}$, $-\infty<\gamma<\frac{N-2} 2$ and $p>0$. Our study concerns to existence of solutions to the former problem. More precisely, first we determine a critical thereshold for the power $p$, in the sense that, beyond this value it does not exist any positive supersolution to our problem, not even in a very weak sense. In addition, we show existence of solutions for all the values $p>0$ below this threshold, with the restriction $\gamma>-\frac{N(1-p)+2}{2}$, whenever the righthand side verifies $f(x)\leq |x|^{-2(\gamma+1)}$ if $\gamma>-1$. When $-\frac{N(1-p)+2}{2}<\gamma\leq -1$ it suffices that $f\in L^{2/p}(\Omega)$. The existence of solutions for $0 < p < 1$ and $\gamma\leq -\frac{N(1-p)+2}{2}$ is an open question.
Citation: Mayte Pérez-Llanos. Optimal power for an elliptic equation related to some Caffarelli-Kohn-Nirenberg inequalities. Communications on Pure and Applied Analysis, 2016, 15 (6) : 1975-2005. doi: 10.3934/cpaa.2016024
References:
[1]

B. Abdellaoui, E. Colorado and I. Peral, Some improved Caffarelli-Kohn-Nirenberg inequalities, Calc. Var. Partial Differential Equations, 23 (2005), 327-345. doi: 10.1007/s00526-004-0303-8.

[2]

B. Abdellaoui and I. Peral, Some results for semilinear elliptic equations with critical potential, Proc. Roy. Soc. Edinburgh Sect. A, 132 (2002), 1-24. doi: 10.1017/S0308210500001505.

[3]

B. Abdellaoui and I. Peral, On quasilinear elliptic equations related to some Caffarelli-Kohn-Nirenberg inequalities, Commun. Pure Appl. Anal., 2 (2003), 539-566. doi: 10.3934/cpaa.2003.2.539.

[4]

B. Abdellaoui and I. Peral, Existence and nonexistence results for quasilinear elliptic equations involving the $p$-Laplacian with a critical potential, Ann. Mat. Pura Appl., 2 (2003), 247-270. doi: 10.1007/s10231-002-0064-y.

[5]

B. Abdellaoui and I. Peral, The equation $-\Delta u-\lambda\frac{u}{|x|^2}=|\nabla u| ^p+cf(x)$: the optimal power, Ann. Sc. Norm. Super. Pisa Cl. Sci., 6 (2007), 159-183.

[6]

N. E. Alaa and M. Pierre, Weak solutions of some quasilinear elliptic equations with data measures, SIAM J. Math. Anal., 24 (1993), 23-35. doi: 10.1137/0524002.

[7]

W. Allegretto and Y. X. Huang, A Picone's identity for the $p$-Laplacian and applications, Nonlinear Anal., 32 (1998), 819-830. doi: 10.1016/S0362-546X(97)00530-0.

[8]

L. Boccardo, F. Murat and J. P. Puel, Rèsultats d'existence pour certains problèmes elliptiques quasilinéaires, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 11 (1984), 213-235.

[9]

L. Boccardo, L. Orsina and I. Peral, A remark on existence and optimal summability of solutions of elliptic problems involving Hardy potential, Discrete Contin. Dyn. Syst., 16 (2006), 513-523. doi: 10.3934/dcds.2006.16.513.

[10]

H. Brezis and X. Cabré, Some simple nonlinear PDE's without solutions, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., 1 (1998), 223-262.

[11]

H. Brezis, L. Dupaigne and A. Tesei, On a semilinear elliptic equation with inverse-square potential, Selecta Math. (N.S.), 11 (2005), 1-7. doi: 10.1007/s00029-005-0003-z.

[12]

H. Brezis and A. C. Ponce, Kato's inequality when $\Delta u$ is a measure, C. R. Math. Acad. Sci. Paris, 338 (2004), 599-604. doi: 10.1016/j.crma.2003.12.032.

[13]

L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequalities with weights, Compositio Math., 53 (1984), 259-275.

[14]

F. Catrina and Z. Q. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions, Comm. Pure Appl. Math., 54 (2001), 229-258. doi: 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO;2-I.

[15]

J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford University Press, New York, 1993.

[16]

T. Kato, Schrödinger operators with singular potentials, Israel J. Math., 13 (1972), 135-148.

[17]

A. Kufner, Weighted Sobolev spaces, John Wiley and Sons, Inc., New York, 1985.

[18]

J. Malý and W. P. Ziemer, Fine Regularity of Solutions of Elliptic Partial Differential Equations, Mathematical Surveys and Monographs, 51 American Mathematical Society, Providence, RI, 1997. doi: 10.1090/surv/051.

[19]

A. Porretta, Elliptic Equations with First Order Terms, Notes of the course at Alexandria, Ecole Cimpa, 2009.

[20]

G. Stampacchia, Le problème de Dirichlet pour les èquations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble), 15 (1965), 189-258.

[21]

C. A. Swanson, Remarks on Picone's identity and related identities,, \emph{Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. Ia}, 11 (): 3. 

show all references

References:
[1]

B. Abdellaoui, E. Colorado and I. Peral, Some improved Caffarelli-Kohn-Nirenberg inequalities, Calc. Var. Partial Differential Equations, 23 (2005), 327-345. doi: 10.1007/s00526-004-0303-8.

[2]

B. Abdellaoui and I. Peral, Some results for semilinear elliptic equations with critical potential, Proc. Roy. Soc. Edinburgh Sect. A, 132 (2002), 1-24. doi: 10.1017/S0308210500001505.

[3]

B. Abdellaoui and I. Peral, On quasilinear elliptic equations related to some Caffarelli-Kohn-Nirenberg inequalities, Commun. Pure Appl. Anal., 2 (2003), 539-566. doi: 10.3934/cpaa.2003.2.539.

[4]

B. Abdellaoui and I. Peral, Existence and nonexistence results for quasilinear elliptic equations involving the $p$-Laplacian with a critical potential, Ann. Mat. Pura Appl., 2 (2003), 247-270. doi: 10.1007/s10231-002-0064-y.

[5]

B. Abdellaoui and I. Peral, The equation $-\Delta u-\lambda\frac{u}{|x|^2}=|\nabla u| ^p+cf(x)$: the optimal power, Ann. Sc. Norm. Super. Pisa Cl. Sci., 6 (2007), 159-183.

[6]

N. E. Alaa and M. Pierre, Weak solutions of some quasilinear elliptic equations with data measures, SIAM J. Math. Anal., 24 (1993), 23-35. doi: 10.1137/0524002.

[7]

W. Allegretto and Y. X. Huang, A Picone's identity for the $p$-Laplacian and applications, Nonlinear Anal., 32 (1998), 819-830. doi: 10.1016/S0362-546X(97)00530-0.

[8]

L. Boccardo, F. Murat and J. P. Puel, Rèsultats d'existence pour certains problèmes elliptiques quasilinéaires, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 11 (1984), 213-235.

[9]

L. Boccardo, L. Orsina and I. Peral, A remark on existence and optimal summability of solutions of elliptic problems involving Hardy potential, Discrete Contin. Dyn. Syst., 16 (2006), 513-523. doi: 10.3934/dcds.2006.16.513.

[10]

H. Brezis and X. Cabré, Some simple nonlinear PDE's without solutions, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., 1 (1998), 223-262.

[11]

H. Brezis, L. Dupaigne and A. Tesei, On a semilinear elliptic equation with inverse-square potential, Selecta Math. (N.S.), 11 (2005), 1-7. doi: 10.1007/s00029-005-0003-z.

[12]

H. Brezis and A. C. Ponce, Kato's inequality when $\Delta u$ is a measure, C. R. Math. Acad. Sci. Paris, 338 (2004), 599-604. doi: 10.1016/j.crma.2003.12.032.

[13]

L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequalities with weights, Compositio Math., 53 (1984), 259-275.

[14]

F. Catrina and Z. Q. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions, Comm. Pure Appl. Math., 54 (2001), 229-258. doi: 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO;2-I.

[15]

J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford University Press, New York, 1993.

[16]

T. Kato, Schrödinger operators with singular potentials, Israel J. Math., 13 (1972), 135-148.

[17]

A. Kufner, Weighted Sobolev spaces, John Wiley and Sons, Inc., New York, 1985.

[18]

J. Malý and W. P. Ziemer, Fine Regularity of Solutions of Elliptic Partial Differential Equations, Mathematical Surveys and Monographs, 51 American Mathematical Society, Providence, RI, 1997. doi: 10.1090/surv/051.

[19]

A. Porretta, Elliptic Equations with First Order Terms, Notes of the course at Alexandria, Ecole Cimpa, 2009.

[20]

G. Stampacchia, Le problème de Dirichlet pour les èquations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble), 15 (1965), 189-258.

[21]

C. A. Swanson, Remarks on Picone's identity and related identities,, \emph{Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. Ia}, 11 (): 3. 

[1]

B. Abdellaoui, I. Peral. On quasilinear elliptic equations related to some Caffarelli-Kohn-Nirenberg inequalities. Communications on Pure and Applied Analysis, 2003, 2 (4) : 539-566. doi: 10.3934/cpaa.2003.2.539

[2]

Pablo L. De Nápoli, Irene Drelichman, Ricardo G. Durán. Improved Caffarelli-Kohn-Nirenberg and trace inequalities for radial functions. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1629-1642. doi: 10.3934/cpaa.2012.11.1629

[3]

Matteo Bonforte, Jean Dolbeault, Matteo Muratori, Bruno Nazaret. Weighted fast diffusion equations (Part Ⅰ): Sharp asymptotic rates without symmetry and symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities. Kinetic and Related Models, 2017, 10 (1) : 33-59. doi: 10.3934/krm.2017002

[4]

Mateus Balbino Guimarães, Rodrigo da Silva Rodrigues. Elliptic equations involving linear and superlinear terms and critical Caffarelli-Kohn-Nirenberg exponent with sign-changing weight functions. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2697-2713. doi: 10.3934/cpaa.2013.12.2697

[5]

Yutian Lei, Zhongxue Lü. Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1987-2005. doi: 10.3934/dcds.2013.33.1987

[6]

Jun Yang, Yaotian Shen. Weighted Sobolev-Hardy spaces and sign-changing solutions of degenerate elliptic equation. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2565-2575. doi: 10.3934/cpaa.2013.12.2565

[7]

Ze Cheng, Congming Li. An extended discrete Hardy-Littlewood-Sobolev inequality. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1951-1959. doi: 10.3934/dcds.2014.34.1951

[8]

Tahar Z. Boulmezaoud, Amel Kourta. Some identities on weighted Sobolev spaces. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 427-434. doi: 10.3934/dcdss.2012.5.427

[9]

José Francisco de Oliveira, João Marcos do Ó, Pedro Ubilla. Hardy-Sobolev type inequality and supercritical extremal problem. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3345-3364. doi: 10.3934/dcds.2019138

[10]

Genggeng Huang, Congming Li, Ximing Yin. Existence of the maximizing pair for the discrete Hardy-Littlewood-Sobolev inequality. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 935-942. doi: 10.3934/dcds.2015.35.935

[11]

Wenxiong Chen, Chao Jin, Congming Li, Jisun Lim. Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations. Conference Publications, 2005, 2005 (Special) : 164-172. doi: 10.3934/proc.2005.2005.164

[12]

T. V. Anoop, Nirjan Biswas, Ujjal Das. Admissible function spaces for weighted Sobolev inequalities. Communications on Pure and Applied Analysis, 2021, 20 (9) : 3259-3297. doi: 10.3934/cpaa.2021105

[13]

Doyoon Kim, Kyeong-Hun Kim, Kijung Lee. Parabolic Systems with measurable coefficients in weighted Sobolev spaces. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022062

[14]

Jingbo Dou, Ye Li. Classification of extremal functions to logarithmic Hardy-Littlewood-Sobolev inequality on the upper half space. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3939-3953. doi: 10.3934/dcds.2018171

[15]

Xiaoqian Liu, Yutian Lei. Existence of positive solutions for integral systems of the weighted Hardy-Littlewood-Sobolev type. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 467-489. doi: 10.3934/dcds.2020018

[16]

Yingshu Lü, Zhongxue Lü. Some properties of solutions to the weighted Hardy-Littlewood-Sobolev type integral system. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3791-3810. doi: 10.3934/dcds.2016.36.3791

[17]

Jing Zhang, Shiwang Ma. Positive solutions of perturbed elliptic problems involving Hardy potential and critical Sobolev exponent. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1999-2009. doi: 10.3934/dcdsb.2016033

[18]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete and Continuous Dynamical Systems - S, 2021, 14 (6) : 1945-1966. doi: 10.3934/dcdss.2020469

[19]

Maria J. Esteban. Gagliardo-Nirenberg-Sobolev inequalities on planar graphs. Communications on Pure and Applied Analysis, 2022, 21 (6) : 2101-2114. doi: 10.3934/cpaa.2022051

[20]

Boumediene Abdellaoui, Fethi Mahmoudi. An improved Hardy inequality for a nonlocal operator. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1143-1157. doi: 10.3934/dcds.2016.36.1143

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (124)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]