-
Previous Article
Robust control of a Cahn-Hilliard-Navier-Stokes model
- CPAA Home
- This Issue
-
Next Article
Global dynamics above the ground state for the energy-critical Schrödinger equation with radial data
On the Hardy-Littlewood-Sobolev type systems
1. | Department of Applied Mathematics, University of Colorado at Boulder, Colorado |
2. | Department of Mathematics, INS and MOE-LSC, Shanghai Jiao Tong University, Shanghai, China |
3. | Department of Applied Mathematics, University of Colorado at Boulder |
References:
[1] |
F. Arthur, X. Yan and M. Zhao, A Liouville-type theorem for higher order elliptic systems, Disc. & Cont. Dynamics Sys., 34 (2014), 3317-3339.
doi: 10.3934/dcds.2014.34.3317. |
[2] |
H. Berestycki, P. L. Lions and L. A. Peletier, An ODE approach to the existence of positive solutions for semi-linear problems in $R^N$, Indiana University Mathematics Journal, 30 (1981), 141-157.
doi: 10.1512/iumj.1981.30.30012. |
[3] |
L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 142 (1989), 615-622.
doi: 10.1002/cpa.3160420304. |
[4] |
W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622.
doi: 10.1215/S0012-7094-91-06325-8. |
[5] |
W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations, Commun. in Partial Differential Equations, 30 (2005), 59-65.
doi: 10.1081/PDE-200044445. |
[6] |
W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.
doi: 10.1002/cpa.20116. |
[7] |
Z. Cheng, G. Huang and C. Li, A Liouville theorem for subcritical Lane-Emden system,, \arXiv{1412.7275}., ().
|
[8] |
Z. Cheng and C. Li, Shooting method with sign-changing nonlinearity, Nonlinear Analysis: Theory, Methods and Applications, 114 (2015), 2-12.
doi: 10.1016/j.na.2014.10.019. |
[9] |
B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $R^n$, Math. Anal. and Applications, Part A, Advances in Math. Suppl. Studies, 7A (1981), 369-402. |
[10] |
Y. Lei and C. Li, Sharp criteria of Liouville type for some nonlinear systems, Discrete Contin. Dyn. Syst., 36 (2016), 3277-3315.
doi: 10.3934/dcds.2016.36.3277. |
[11] |
Y. Lei, C. Li and C. Ma, Asymptotic radial symmetry and growth estimates of positive solutions to the weighted HLS system, Calc. Var. of Partial Differential Equations, 45 (2012), 43-61.
doi: 10.1007/s00526-011-0450-7. |
[12] |
C. Li and J. Villaver, Existence of positive solutions to semilinear elliptic systems with supercritical growth, Comm. in Partial Differential Equation, 41 (2016), 1029-1039.
doi: 10.1080/03605302.2016.1190376. |
[13] |
E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math., 118 (1983), 349-374.
doi: 10.2307/2007032. |
[14] |
J. Liu, Y. Guo and Y. Zhang, Existence of positive entire solutions for polyharmonic equations and systems, Journal of Partial Differential Equations, 19 (2006), 256. |
[15] |
E. Mitidieri, Nonexistence of positive solutions of semilinear elliptic systems in $R^N$, Quaderno Matematico, (1982), 285. |
[16] |
E. Mitidieri, A Rellich type identity and applications: Identity and applications, Communications in partial differential equations, 18 (1993), 125-151.
doi: 10.1080/03605309308820923. |
[17] |
E. Mitidieri, Nonexistence of positive solutions of semilinear elliptic systems in $R^N$, Differ. Integral Equations, 9 (1996), 465-479. |
[18] |
S. Pohozaev, Eigenfunctions of the equation $\Delta u + \lambda f(u)=0$, Soviet Math. Doklady, 6 (1965), 1408-1411. |
[19] |
P. Polacik, P. Quittner and P. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems, Part I: Elliptic equations and systems, Duke Math. J., 139 (2007), 555-579.
doi: 10.1215/S0012-7094-07-13935-8. |
[20] |
P. Pucci and J. Serrin, A general variational identity, Indiana Univ. J. Math., 35 (1986), 681-703.
doi: 10.1512/iumj.1986.35.35036. |
[21] |
Pavol Quittner and Philippe Souplet, Superlinear Parabolic Problems: Blow-Up, Global Existence and Steady States, Springer, 2007. |
[22] |
J. Serrin, A symmetry problem in potential theory, Arch. Rat. Mech. Anal., 43 (1971), 304-318. |
[23] |
J. Serrin and H. Zou, Non-existence of positive solutions of Lane-Emden systems, Differ. Integral Equations, 9 (1996), 635-654. |
[24] |
J. Serrin and H. Zou, Existence of positive solutions of the Lane-Emden system, Atti Semi. Mat. Fis. Univ. Modena, 46 (1998), 369-380. |
[25] |
P. Souplet, The proof of the Lane-Emden conjecture in four space dimensions, Advances in Mathematics, 221 (2009), 1409-1427.
doi: 10.1016/j.aim.2009.02.014. |
[26] |
J. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations, Math. Ann., (1999), 207-228.
doi: 10.1007/s002080050258. |
show all references
References:
[1] |
F. Arthur, X. Yan and M. Zhao, A Liouville-type theorem for higher order elliptic systems, Disc. & Cont. Dynamics Sys., 34 (2014), 3317-3339.
doi: 10.3934/dcds.2014.34.3317. |
[2] |
H. Berestycki, P. L. Lions and L. A. Peletier, An ODE approach to the existence of positive solutions for semi-linear problems in $R^N$, Indiana University Mathematics Journal, 30 (1981), 141-157.
doi: 10.1512/iumj.1981.30.30012. |
[3] |
L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 142 (1989), 615-622.
doi: 10.1002/cpa.3160420304. |
[4] |
W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622.
doi: 10.1215/S0012-7094-91-06325-8. |
[5] |
W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations, Commun. in Partial Differential Equations, 30 (2005), 59-65.
doi: 10.1081/PDE-200044445. |
[6] |
W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.
doi: 10.1002/cpa.20116. |
[7] |
Z. Cheng, G. Huang and C. Li, A Liouville theorem for subcritical Lane-Emden system,, \arXiv{1412.7275}., ().
|
[8] |
Z. Cheng and C. Li, Shooting method with sign-changing nonlinearity, Nonlinear Analysis: Theory, Methods and Applications, 114 (2015), 2-12.
doi: 10.1016/j.na.2014.10.019. |
[9] |
B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $R^n$, Math. Anal. and Applications, Part A, Advances in Math. Suppl. Studies, 7A (1981), 369-402. |
[10] |
Y. Lei and C. Li, Sharp criteria of Liouville type for some nonlinear systems, Discrete Contin. Dyn. Syst., 36 (2016), 3277-3315.
doi: 10.3934/dcds.2016.36.3277. |
[11] |
Y. Lei, C. Li and C. Ma, Asymptotic radial symmetry and growth estimates of positive solutions to the weighted HLS system, Calc. Var. of Partial Differential Equations, 45 (2012), 43-61.
doi: 10.1007/s00526-011-0450-7. |
[12] |
C. Li and J. Villaver, Existence of positive solutions to semilinear elliptic systems with supercritical growth, Comm. in Partial Differential Equation, 41 (2016), 1029-1039.
doi: 10.1080/03605302.2016.1190376. |
[13] |
E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math., 118 (1983), 349-374.
doi: 10.2307/2007032. |
[14] |
J. Liu, Y. Guo and Y. Zhang, Existence of positive entire solutions for polyharmonic equations and systems, Journal of Partial Differential Equations, 19 (2006), 256. |
[15] |
E. Mitidieri, Nonexistence of positive solutions of semilinear elliptic systems in $R^N$, Quaderno Matematico, (1982), 285. |
[16] |
E. Mitidieri, A Rellich type identity and applications: Identity and applications, Communications in partial differential equations, 18 (1993), 125-151.
doi: 10.1080/03605309308820923. |
[17] |
E. Mitidieri, Nonexistence of positive solutions of semilinear elliptic systems in $R^N$, Differ. Integral Equations, 9 (1996), 465-479. |
[18] |
S. Pohozaev, Eigenfunctions of the equation $\Delta u + \lambda f(u)=0$, Soviet Math. Doklady, 6 (1965), 1408-1411. |
[19] |
P. Polacik, P. Quittner and P. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems, Part I: Elliptic equations and systems, Duke Math. J., 139 (2007), 555-579.
doi: 10.1215/S0012-7094-07-13935-8. |
[20] |
P. Pucci and J. Serrin, A general variational identity, Indiana Univ. J. Math., 35 (1986), 681-703.
doi: 10.1512/iumj.1986.35.35036. |
[21] |
Pavol Quittner and Philippe Souplet, Superlinear Parabolic Problems: Blow-Up, Global Existence and Steady States, Springer, 2007. |
[22] |
J. Serrin, A symmetry problem in potential theory, Arch. Rat. Mech. Anal., 43 (1971), 304-318. |
[23] |
J. Serrin and H. Zou, Non-existence of positive solutions of Lane-Emden systems, Differ. Integral Equations, 9 (1996), 635-654. |
[24] |
J. Serrin and H. Zou, Existence of positive solutions of the Lane-Emden system, Atti Semi. Mat. Fis. Univ. Modena, 46 (1998), 369-380. |
[25] |
P. Souplet, The proof of the Lane-Emden conjecture in four space dimensions, Advances in Mathematics, 221 (2009), 1409-1427.
doi: 10.1016/j.aim.2009.02.014. |
[26] |
J. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations, Math. Ann., (1999), 207-228.
doi: 10.1007/s002080050258. |
[1] |
Ze Cheng, Changfeng Gui, Yeyao Hu. Existence of solutions to the supercritical Hardy-Littlewood-Sobolev system with fractional Laplacians. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1345-1358. doi: 10.3934/dcds.2019057 |
[2] |
Genggeng Huang, Congming Li, Ximing Yin. Existence of the maximizing pair for the discrete Hardy-Littlewood-Sobolev inequality. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 935-942. doi: 10.3934/dcds.2015.35.935 |
[3] |
Gui-Dong Li, Chun-Lei Tang. Existence of ground state solutions for Choquard equation involving the general upper critical Hardy-Littlewood-Sobolev nonlinear term. Communications on Pure and Applied Analysis, 2019, 18 (1) : 285-300. doi: 10.3934/cpaa.2019015 |
[4] |
Xiaoqian Liu, Yutian Lei. Existence of positive solutions for integral systems of the weighted Hardy-Littlewood-Sobolev type. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 467-489. doi: 10.3934/dcds.2020018 |
[5] |
Ze Cheng, Congming Li. An extended discrete Hardy-Littlewood-Sobolev inequality. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1951-1959. doi: 10.3934/dcds.2014.34.1951 |
[6] |
Lorenzo D'Ambrosio, Enzo Mitidieri. Hardy-Littlewood-Sobolev systems and related Liouville theorems. Discrete and Continuous Dynamical Systems - S, 2014, 7 (4) : 653-671. doi: 10.3934/dcdss.2014.7.653 |
[7] |
Wenxiong Chen, Chao Jin, Congming Li, Jisun Lim. Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations. Conference Publications, 2005, 2005 (Special) : 164-172. doi: 10.3934/proc.2005.2005.164 |
[8] |
Xiaorong Luo, Anmin Mao, Yanbin Sang. Nonlinear Choquard equations with Hardy-Littlewood-Sobolev critical exponents. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1319-1345. doi: 10.3934/cpaa.2021022 |
[9] |
Alberto Bressan, Truyen Nguyen. Non-existence and non-uniqueness for multidimensional sticky particle systems. Kinetic and Related Models, 2014, 7 (2) : 205-218. doi: 10.3934/krm.2014.7.205 |
[10] |
Yu Zheng, Carlos A. Santos, Zifei Shen, Minbo Yang. Least energy solutions for coupled hartree system with hardy-littlewood-sobolev critical exponents. Communications on Pure and Applied Analysis, 2020, 19 (1) : 329-369. doi: 10.3934/cpaa.2020018 |
[11] |
Yingshu Lü, Zhongxue Lü. Some properties of solutions to the weighted Hardy-Littlewood-Sobolev type integral system. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3791-3810. doi: 10.3934/dcds.2016.36.3791 |
[12] |
Yutian Lei, Zhongxue Lü. Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1987-2005. doi: 10.3934/dcds.2013.33.1987 |
[13] |
Hua Jin, Wenbin Liu, Huixing Zhang, Jianjun Zhang. Ground states of nonlinear fractional Choquard equations with Hardy-Littlewood-Sobolev critical growth. Communications on Pure and Applied Analysis, 2020, 19 (1) : 123-144. doi: 10.3934/cpaa.2020008 |
[14] |
Jingbo Dou, Ye Li. Classification of extremal functions to logarithmic Hardy-Littlewood-Sobolev inequality on the upper half space. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3939-3953. doi: 10.3934/dcds.2018171 |
[15] |
Minbo Yang, Fukun Zhao, Shunneng Zhao. Classification of solutions to a nonlocal equation with doubly Hardy-Littlewood-Sobolev critical exponents. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5209-5241. doi: 10.3934/dcds.2021074 |
[16] |
Yingshu Lü. Symmetry and non-existence of solutions to an integral system. Communications on Pure and Applied Analysis, 2018, 17 (3) : 807-821. doi: 10.3934/cpaa.2018041 |
[17] |
Delia Schiera. Existence and non-existence results for variational higher order elliptic systems. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5145-5161. doi: 10.3934/dcds.2018227 |
[18] |
Keisuke Matsuya, Tetsuji Tokihiro. Existence and non-existence of global solutions for a discrete semilinear heat equation. Discrete and Continuous Dynamical Systems, 2011, 31 (1) : 209-220. doi: 10.3934/dcds.2011.31.209 |
[19] |
Jitsuro Sugie, Tadayuki Hara. Existence and non-existence of homoclinic trajectories of the Liénard system. Discrete and Continuous Dynamical Systems, 1996, 2 (2) : 237-254. doi: 10.3934/dcds.1996.2.237 |
[20] |
Elias M. Guio, Ricardo Sa Earp. Existence and non-existence for a mean curvature equation in hyperbolic space. Communications on Pure and Applied Analysis, 2005, 4 (3) : 549-568. doi: 10.3934/cpaa.2005.4.549 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]