Citation: |
[1] |
F. Arthur, X. Yan and M. Zhao, A Liouville-type theorem for higher order elliptic systems, Disc. & Cont. Dynamics Sys., 34 (2014), 3317-3339.doi: 10.3934/dcds.2014.34.3317. |
[2] |
H. Berestycki, P. L. Lions and L. A. Peletier, An ODE approach to the existence of positive solutions for semi-linear problems in $R^N$, Indiana University Mathematics Journal, 30 (1981), 141-157.doi: 10.1512/iumj.1981.30.30012. |
[3] |
L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 142 (1989), 615-622.doi: 10.1002/cpa.3160420304. |
[4] |
W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622.doi: 10.1215/S0012-7094-91-06325-8. |
[5] |
W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations, Commun. in Partial Differential Equations, 30 (2005), 59-65.doi: 10.1081/PDE-200044445. |
[6] |
W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.doi: 10.1002/cpa.20116. |
[7] |
Z. Cheng, G. Huang and C. Li, A Liouville theorem for subcritical Lane-Emden system, arXiv:1412.7275. |
[8] |
Z. Cheng and C. Li, Shooting method with sign-changing nonlinearity, Nonlinear Analysis: Theory, Methods and Applications, 114 (2015), 2-12.doi: 10.1016/j.na.2014.10.019. |
[9] |
B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $R^n$, Math. Anal. and Applications, Part A, Advances in Math. Suppl. Studies, 7A (1981), 369-402. |
[10] |
Y. Lei and C. Li, Sharp criteria of Liouville type for some nonlinear systems, Discrete Contin. Dyn. Syst., 36 (2016), 3277-3315.doi: 10.3934/dcds.2016.36.3277. |
[11] |
Y. Lei, C. Li and C. Ma, Asymptotic radial symmetry and growth estimates of positive solutions to the weighted HLS system, Calc. Var. of Partial Differential Equations, 45 (2012), 43-61.doi: 10.1007/s00526-011-0450-7. |
[12] |
C. Li and J. Villaver, Existence of positive solutions to semilinear elliptic systems with supercritical growth, Comm. in Partial Differential Equation, 41 (2016), 1029-1039.doi: 10.1080/03605302.2016.1190376. |
[13] |
E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math., 118 (1983), 349-374.doi: 10.2307/2007032. |
[14] |
J. Liu, Y. Guo and Y. Zhang, Existence of positive entire solutions for polyharmonic equations and systems, Journal of Partial Differential Equations, 19 (2006), 256. |
[15] |
E. Mitidieri, Nonexistence of positive solutions of semilinear elliptic systems in $R^N$, Quaderno Matematico, (1982), 285. |
[16] |
E. Mitidieri, A Rellich type identity and applications: Identity and applications, Communications in partial differential equations, 18 (1993), 125-151.doi: 10.1080/03605309308820923. |
[17] |
E. Mitidieri, Nonexistence of positive solutions of semilinear elliptic systems in $R^N$, Differ. Integral Equations, 9 (1996), 465-479. |
[18] |
S. Pohozaev, Eigenfunctions of the equation $\Delta u + \lambda f(u)=0$, Soviet Math. Doklady, 6 (1965), 1408-1411. |
[19] |
P. Polacik, P. Quittner and P. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems, Part I: Elliptic equations and systems, Duke Math. J., 139 (2007), 555-579.doi: 10.1215/S0012-7094-07-13935-8. |
[20] |
P. Pucci and J. Serrin, A general variational identity, Indiana Univ. J. Math., 35 (1986), 681-703.doi: 10.1512/iumj.1986.35.35036. |
[21] |
Pavol Quittner and Philippe Souplet, Superlinear Parabolic Problems: Blow-Up, Global Existence and Steady States, Springer, 2007. |
[22] |
J. Serrin, A symmetry problem in potential theory, Arch. Rat. Mech. Anal., 43 (1971), 304-318. |
[23] |
J. Serrin and H. Zou, Non-existence of positive solutions of Lane-Emden systems, Differ. Integral Equations, 9 (1996), 635-654. |
[24] |
J. Serrin and H. Zou, Existence of positive solutions of the Lane-Emden system, Atti Semi. Mat. Fis. Univ. Modena, 46 (1998), 369-380. |
[25] |
P. Souplet, The proof of the Lane-Emden conjecture in four space dimensions, Advances in Mathematics, 221 (2009), 1409-1427.doi: 10.1016/j.aim.2009.02.014. |
[26] |
J. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations, Math. Ann., (1999), 207-228.doi: 10.1007/s002080050258. |