-
Previous Article
Well-posedness for the Cauchy problem of the Klein-Gordon-Zakharov system in four and more spatial dimensions
- CPAA Home
- This Issue
-
Next Article
Low regularity solutions for the (2+1)-dimensional Maxwell-Klein-Gordon equations in temporal gauge
Existence and upper semicontinuity of attractors for non-autonomous stochastic lattice systems with random coupled coefficients
1. | School of Mathematical Science, Huaiyin Normal University, Huaian 223300, China |
2. | Department of Mathematics, Zhejiang Normal University, Jinhua, 321004 |
References:
[1] |
R. A. Adams and J. J. Fournier, Sobolev Spaces, 2nd edition, Elsevier Ltd., 2003. |
[2] |
L. Arnold, Random Dynamical Systems, Springer-Verlag, New York and Berlin, 1998. |
[3] |
P. W. Bates, K. Lu and B. Wang, Attractors for lattice dynamical systems, Internat. J. Bifur. Chaos., 11 (2001), 143-153.
doi: 10.1142/s0218127401002031. |
[4] |
P. W. Bates, H. Lisei and K. Lu, Attractors for stochastic lattice dynamical systems, Stoch. Dyn., 6 (2006), 1-21.
doi: 10.1142/S0219493706001621. |
[5] |
P. W. Bates, K. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869. |
[6] |
P. W. Bates, K. Lu and B. Wang, Attractors for non-autonomous stochastic lattice systems in weighted space, Physica D, 289 (2014), 32-50.
doi: 10.1016/j.physd.2014.08.004. |
[7] |
I. Chueshov, Monotone Random Systems Theory and Applications, Springer-Verlag, New York, 2002. |
[8] |
T. Caraballo and J. A. Langa, On the upper semicontinuity of cocycle attractors for nonautonomous and random dynamical systems, Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis, 10 (2003), 491-513. |
[9] |
T. Caraballo and K. Lu, Attractors for stochastic lattice dynamical systems with a multiplicative noise, Front. Math. China, 3 (2008), 317-335.
doi: 10.1007/s11464-008-0028-7. |
[10] |
T. Caraballo, X. Han, B. Schmalfuss and J. Valero, Random attractors for stochastic lattice dynamical systems with infinite multiplicative white noise, Nonlinear Anal., 130 (2016), 255-278.
doi: 10.1016/j.na.2015.09.025. |
[11] |
H. Crauel, A. Debussche and F. Flandoli, Random attractors, J. Dyn. Diff. Eqns., 9 (1997), 307-341. |
[12] |
H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Th. Re. Fields, 100 (1994), 365-393.
doi: 10.1007/bf01193705. |
[13] |
J. Duan, K. Lu and B. Schmalfuss, Invariant manifolds for stochastic partial differential equations, Ann. Probab., 31 (2003), 2109-2135. |
[14] |
F. Flandoli and B. Schmalfuss, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise, Stochastics: An Inter. J. Probability and Stoch. Processes., 59 (1996), 21-45. |
[15] |
J. K. Hale and G. Raugel, Upper semicontinuity of the attractor for a singularly perturbed hyperbolic equation, J. Differential Equations, 73 (1988), 197-214.
doi: 10.1016/0022-0396(88)90104-0. |
[16] |
X. Han, W. Shen and S. Zhou, Random attractors for stochastic lattice dynamical systems in weighted spaces, J. Differential Equations, 250 (2011), 1235-1266.
doi: 10.1016/j.jde.2010.10.018. |
[17] |
X. Han, Random attractors for stochastic sine-Gordon lattice systems with multiplicative white noise, J. Math. Anal. Appl., 376 (2011), 481-493.
doi: 10.1016/j.jmaa.2010.11.032. |
[18] |
J. Huang, The random attractor of stochastic FitzHugh-Nagumo equations in an infinite lattice with white noises, Phys. D., 233 (2007), 83-94.
doi: 10.1016/j.physd.2007.06.008. |
[19] |
Y. Lv and J. Sun, Dynamical behavior for stochastic lattice systems, Chaos Solitons Fractals, 27 (2006), 1080-1090.
doi: 10.1016/j.chaos.2005.04.089. |
[20] |
Y. Lv and J. Sun, Asymptotic behavior of stochastic discrete complex Ginzburg-Landau equations, Phys. D., 221 (2006), 157-169.
doi: 10.1016/j.physd.2006.07.023. |
[21] |
A. Pazy, Semigroup of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[22] |
D. Ruelle, Characteristic exponents for a viscous fluid subjected to time dependent forces, Commu. Math. Phys., 93 (1984), 285-300.
doi: 10.1142/9789812833709_0019. |
[23] |
G. Raugel and G. R. Sell, Navier-Stokes equations on thin 3D domains. I: global attractors and global regularity of solutions, Journal of American Mathematical Society, 6 (1993), 503-568.
doi: 10.1090/s0894-0347-1993-1179539-4. |
[24] |
E. V. Vleck and B. Wang, Attractors for lattice FitzHugh-Nagumo systems, Phys. D., 212 (2005), 317-336.
doi: 10.1016/j.physd.2005.10.006. |
[25] |
B. Wang, Dynamics of systems on infinite lattices, J. Differential Equations, 221 (2006), 224-245.
doi: 10.1016/j.jde.2005.01.003. |
[26] |
B. Wang, Asymptotic behavior of non-autonomous lattice systems, J. Math. Anal. Appl., 331 (2007), 121-136.
doi: 10.1016/j.jmaa.2006.08.070. |
[27] |
B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.
doi: 10.1016/j.jde.2012.05.015. |
[28] |
B. Wang, Existence and upper semicontinuity of attractors for stochastic equations with deterministic non-autonomous terms, Stochastics and Dynamics, 14 (2014), 31 pages.
doi: 10.1142/s0219493714500099. |
[29] |
Y. Wang, Y. Liu and Z. Wang, Random attractors for partly dissipative stochastic lattice dynamical systems, J. Difference Eqns. Appl., 14 (2008), 799-817.
doi: 10.1080/10236190701859542. |
[30] |
X. Wang, S. Li and D. Xu, Random attractors for second-order stochastic lattice dynamical systems, Nonlinear Anal., 72 (2010), 483-494.
doi: 10.1016/j.na.2009.06.094. |
[31] |
C. Zhao and S. Zhou, Compact uniform attractors for dissipative lattice dynamical systems with delays, Discrete Contin. Dyn. Syst., 21 (2008), 643-663.
doi: 10.3934/dcds.2008.21.643. |
[32] |
C. Zhao, S. Zhou and W. Wang, Compact kernel sections for lattice systems with delays, Nonlinear Anal., 70 (2009), 1330-1348.
doi: 10.1016/j.na.2008.02.015. |
[33] |
C. Zhao and S. Zhou, Attractors of retarded first order lattice systems, Nonlinearity, 20 (2007), 1987-2006.
doi: 10.1088/0951-7715/20/8/010. |
[34] |
C. Zhao and S. Zhou, Sufficient conditions for the existence of global random attractors for stochastic lattice dynamical systems and applications, J. Math. Anal. Appl., 354 (2009), 78-95.
doi: 10.1016/j.jmaa.2008.12.036. |
[35] |
S. Zhou, Attractors for second order lattice dynamical systems, J. Differential Equations, 179 (2002), 605-624.
doi: 10.1006/jdeq.2001.4032. |
[36] |
S. Zhou, Attractors for first order dissipative lattice dynamical systems, Phys. D., 178 (2003), 51-61.
doi: 10.1016/s0167-2789(02)00807-2. |
[37] |
S. Zhou and W. Shi, Attractors and dimension ofdissipative lattice systems, J. Differential Equations, 224 (2006), 172-204.
doi: 10.1016/j.jde.2005.06.024. |
[38] |
S. Zhou, Attractors and approximations for lattice dynamical systems, J. Differential Equations, 200 (2004), 342-368.
doi: 10.1016/j.jde.2004.02.005. |
[39] |
S. Zhou and L. Wei, A random attractor for a stochastic second order lattice system with random coupled coefficients, J. Math. Anal. Appl., 395 (2012), 42-55.
doi: 10.1016/j.jmaa.2012.04.080. |
[40] |
X. Zhao and S. Zhou, Kernel sections for processes and nonautonomous lattice systems, Discrete Contin. Dyn. Syst. Ser. B., 9 (2008), 763-785. |
show all references
References:
[1] |
R. A. Adams and J. J. Fournier, Sobolev Spaces, 2nd edition, Elsevier Ltd., 2003. |
[2] |
L. Arnold, Random Dynamical Systems, Springer-Verlag, New York and Berlin, 1998. |
[3] |
P. W. Bates, K. Lu and B. Wang, Attractors for lattice dynamical systems, Internat. J. Bifur. Chaos., 11 (2001), 143-153.
doi: 10.1142/s0218127401002031. |
[4] |
P. W. Bates, H. Lisei and K. Lu, Attractors for stochastic lattice dynamical systems, Stoch. Dyn., 6 (2006), 1-21.
doi: 10.1142/S0219493706001621. |
[5] |
P. W. Bates, K. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869. |
[6] |
P. W. Bates, K. Lu and B. Wang, Attractors for non-autonomous stochastic lattice systems in weighted space, Physica D, 289 (2014), 32-50.
doi: 10.1016/j.physd.2014.08.004. |
[7] |
I. Chueshov, Monotone Random Systems Theory and Applications, Springer-Verlag, New York, 2002. |
[8] |
T. Caraballo and J. A. Langa, On the upper semicontinuity of cocycle attractors for nonautonomous and random dynamical systems, Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis, 10 (2003), 491-513. |
[9] |
T. Caraballo and K. Lu, Attractors for stochastic lattice dynamical systems with a multiplicative noise, Front. Math. China, 3 (2008), 317-335.
doi: 10.1007/s11464-008-0028-7. |
[10] |
T. Caraballo, X. Han, B. Schmalfuss and J. Valero, Random attractors for stochastic lattice dynamical systems with infinite multiplicative white noise, Nonlinear Anal., 130 (2016), 255-278.
doi: 10.1016/j.na.2015.09.025. |
[11] |
H. Crauel, A. Debussche and F. Flandoli, Random attractors, J. Dyn. Diff. Eqns., 9 (1997), 307-341. |
[12] |
H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Th. Re. Fields, 100 (1994), 365-393.
doi: 10.1007/bf01193705. |
[13] |
J. Duan, K. Lu and B. Schmalfuss, Invariant manifolds for stochastic partial differential equations, Ann. Probab., 31 (2003), 2109-2135. |
[14] |
F. Flandoli and B. Schmalfuss, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise, Stochastics: An Inter. J. Probability and Stoch. Processes., 59 (1996), 21-45. |
[15] |
J. K. Hale and G. Raugel, Upper semicontinuity of the attractor for a singularly perturbed hyperbolic equation, J. Differential Equations, 73 (1988), 197-214.
doi: 10.1016/0022-0396(88)90104-0. |
[16] |
X. Han, W. Shen and S. Zhou, Random attractors for stochastic lattice dynamical systems in weighted spaces, J. Differential Equations, 250 (2011), 1235-1266.
doi: 10.1016/j.jde.2010.10.018. |
[17] |
X. Han, Random attractors for stochastic sine-Gordon lattice systems with multiplicative white noise, J. Math. Anal. Appl., 376 (2011), 481-493.
doi: 10.1016/j.jmaa.2010.11.032. |
[18] |
J. Huang, The random attractor of stochastic FitzHugh-Nagumo equations in an infinite lattice with white noises, Phys. D., 233 (2007), 83-94.
doi: 10.1016/j.physd.2007.06.008. |
[19] |
Y. Lv and J. Sun, Dynamical behavior for stochastic lattice systems, Chaos Solitons Fractals, 27 (2006), 1080-1090.
doi: 10.1016/j.chaos.2005.04.089. |
[20] |
Y. Lv and J. Sun, Asymptotic behavior of stochastic discrete complex Ginzburg-Landau equations, Phys. D., 221 (2006), 157-169.
doi: 10.1016/j.physd.2006.07.023. |
[21] |
A. Pazy, Semigroup of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[22] |
D. Ruelle, Characteristic exponents for a viscous fluid subjected to time dependent forces, Commu. Math. Phys., 93 (1984), 285-300.
doi: 10.1142/9789812833709_0019. |
[23] |
G. Raugel and G. R. Sell, Navier-Stokes equations on thin 3D domains. I: global attractors and global regularity of solutions, Journal of American Mathematical Society, 6 (1993), 503-568.
doi: 10.1090/s0894-0347-1993-1179539-4. |
[24] |
E. V. Vleck and B. Wang, Attractors for lattice FitzHugh-Nagumo systems, Phys. D., 212 (2005), 317-336.
doi: 10.1016/j.physd.2005.10.006. |
[25] |
B. Wang, Dynamics of systems on infinite lattices, J. Differential Equations, 221 (2006), 224-245.
doi: 10.1016/j.jde.2005.01.003. |
[26] |
B. Wang, Asymptotic behavior of non-autonomous lattice systems, J. Math. Anal. Appl., 331 (2007), 121-136.
doi: 10.1016/j.jmaa.2006.08.070. |
[27] |
B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.
doi: 10.1016/j.jde.2012.05.015. |
[28] |
B. Wang, Existence and upper semicontinuity of attractors for stochastic equations with deterministic non-autonomous terms, Stochastics and Dynamics, 14 (2014), 31 pages.
doi: 10.1142/s0219493714500099. |
[29] |
Y. Wang, Y. Liu and Z. Wang, Random attractors for partly dissipative stochastic lattice dynamical systems, J. Difference Eqns. Appl., 14 (2008), 799-817.
doi: 10.1080/10236190701859542. |
[30] |
X. Wang, S. Li and D. Xu, Random attractors for second-order stochastic lattice dynamical systems, Nonlinear Anal., 72 (2010), 483-494.
doi: 10.1016/j.na.2009.06.094. |
[31] |
C. Zhao and S. Zhou, Compact uniform attractors for dissipative lattice dynamical systems with delays, Discrete Contin. Dyn. Syst., 21 (2008), 643-663.
doi: 10.3934/dcds.2008.21.643. |
[32] |
C. Zhao, S. Zhou and W. Wang, Compact kernel sections for lattice systems with delays, Nonlinear Anal., 70 (2009), 1330-1348.
doi: 10.1016/j.na.2008.02.015. |
[33] |
C. Zhao and S. Zhou, Attractors of retarded first order lattice systems, Nonlinearity, 20 (2007), 1987-2006.
doi: 10.1088/0951-7715/20/8/010. |
[34] |
C. Zhao and S. Zhou, Sufficient conditions for the existence of global random attractors for stochastic lattice dynamical systems and applications, J. Math. Anal. Appl., 354 (2009), 78-95.
doi: 10.1016/j.jmaa.2008.12.036. |
[35] |
S. Zhou, Attractors for second order lattice dynamical systems, J. Differential Equations, 179 (2002), 605-624.
doi: 10.1006/jdeq.2001.4032. |
[36] |
S. Zhou, Attractors for first order dissipative lattice dynamical systems, Phys. D., 178 (2003), 51-61.
doi: 10.1016/s0167-2789(02)00807-2. |
[37] |
S. Zhou and W. Shi, Attractors and dimension ofdissipative lattice systems, J. Differential Equations, 224 (2006), 172-204.
doi: 10.1016/j.jde.2005.06.024. |
[38] |
S. Zhou, Attractors and approximations for lattice dynamical systems, J. Differential Equations, 200 (2004), 342-368.
doi: 10.1016/j.jde.2004.02.005. |
[39] |
S. Zhou and L. Wei, A random attractor for a stochastic second order lattice system with random coupled coefficients, J. Math. Anal. Appl., 395 (2012), 42-55.
doi: 10.1016/j.jmaa.2012.04.080. |
[40] |
X. Zhao and S. Zhou, Kernel sections for processes and nonautonomous lattice systems, Discrete Contin. Dyn. Syst. Ser. B., 9 (2008), 763-785. |
[1] |
Zhaojuan Wang, Shengfan Zhou. Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4767-4817. doi: 10.3934/dcds.2018210 |
[2] |
Zhaojuan Wang, Shengfan Zhou. Random attractor for stochastic non-autonomous damped wave equation with critical exponent. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 545-573. doi: 10.3934/dcds.2017022 |
[3] |
Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887 |
[4] |
Shuang Yang, Yangrong Li. Forward controllability of a random attractor for the non-autonomous stochastic sine-Gordon equation on an unbounded domain. Evolution Equations and Control Theory, 2020, 9 (3) : 581-604. doi: 10.3934/eect.2020025 |
[5] |
Ling Xu, Jianhua Huang, Qiaozhen Ma. Random exponential attractor for stochastic non-autonomous suspension bridge equation with additive white noise. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2021318 |
[6] |
Xiaoyue Li, Xuerong Mao. Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 523-545. doi: 10.3934/dcds.2009.24.523 |
[7] |
Bixiang Wang. Random attractors for non-autonomous stochastic wave equations with multiplicative noise. Discrete and Continuous Dynamical Systems, 2014, 34 (1) : 269-300. doi: 10.3934/dcds.2014.34.269 |
[8] |
Bixiang Wang. Multivalued non-autonomous random dynamical systems for wave equations without uniqueness. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 2011-2051. doi: 10.3934/dcdsb.2017119 |
[9] |
Ling Xu, Jianhua Huang, Qiaozhen Ma. Upper semicontinuity of random attractors for the stochastic non-autonomous suspension bridge equation with memory. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 5959-5979. doi: 10.3934/dcdsb.2019115 |
[10] |
Hong Lu, Jiangang Qi, Bixiang Wang, Mingji Zhang. Random attractors for non-autonomous fractional stochastic parabolic equations on unbounded domains. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 683-706. doi: 10.3934/dcds.2019028 |
[11] |
Abiti Adili, Bixiang Wang. Random attractors for stochastic FitzHugh-Nagumo systems driven by deterministic non-autonomous forcing. Discrete and Continuous Dynamical Systems - B, 2013, 18 (3) : 643-666. doi: 10.3934/dcdsb.2013.18.643 |
[12] |
Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080 |
[13] |
Dingshi Li, Xuemin Wang. Regular random attractors for non-autonomous stochastic reaction-diffusion equations on thin domains. Electronic Research Archive, 2021, 29 (2) : 1969-1990. doi: 10.3934/era.2020100 |
[14] |
Abiti Adili, Bixiang Wang. Random attractors for non-autonomous stochastic FitzHugh-Nagumo systems with multiplicative noise. Conference Publications, 2013, 2013 (special) : 1-10. doi: 10.3934/proc.2013.2013.1 |
[15] |
Zhaojuan Wang, Shengfan Zhou. Existence and upper semicontinuity of random attractors for non-autonomous stochastic strongly damped wave equation with multiplicative noise. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2787-2812. doi: 10.3934/dcds.2017120 |
[16] |
Shu Wang, Mengmeng Si, Rong Yang. Random attractors for non-autonomous stochastic Brinkman-Forchheimer equations on unbounded domains. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1621-1636. doi: 10.3934/cpaa.2022034 |
[17] |
Junyi Tu, Yuncheng You. Random attractor of stochastic Brusselator system with multiplicative noise. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2757-2779. doi: 10.3934/dcds.2016.36.2757 |
[18] |
Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure and Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087 |
[19] |
Tomás Caraballo, David Cheban. On the structure of the global attractor for non-autonomous dynamical systems with weak convergence. Communications on Pure and Applied Analysis, 2012, 11 (2) : 809-828. doi: 10.3934/cpaa.2012.11.809 |
[20] |
Alexandre N. Carvalho, José A. Langa, James C. Robinson. Non-autonomous dynamical systems. Discrete and Continuous Dynamical Systems - B, 2015, 20 (3) : 703-747. doi: 10.3934/dcdsb.2015.20.703 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]