\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Well-posedness for the Cauchy problem of the Klein-Gordon-Zakharov system in four and more spatial dimensions

Abstract Related Papers Cited by
  • We study the Cauchy problem of the Klein-Gordon-Zakharov system in spatial dimension $d \ge 4$ with radial or non-radial initial datum $(u, \partial_t u, n,$ $ \partial_t n)|_{t=0} \in H^{s+1}(R^d) \times H^s(R^d) \times\dot{H}^s(R^d) \times \dot{H}^{s-1}(R^d)$. The critical value of $s$ is $s_c=d/2-2$. By the radial Strichartz estimates and $U^2, V^2$ type spaces, we prove that the small data global well-posedness and scattering hold at $s=s_c$ in $d \ge 4$ for radial initial datum. For non-radial initial datum, we prove that the local well-posedness hold at $s=1/4$ when $d=4$ and $s=s_c+1/(d+1)$ when $d \ge 5$.
    Mathematics Subject Classification: Primary: 35Q55, 35B40; Secondary: 35A01, 35A02.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and application to nonlinear evolution equations I. Schrödinger equations, GAFA, 3 (1993), 107-156.doi: 10.1007/BF01896020.

    [2]

    Y. Cho and S. Lee, Strichartz estimates in spherical coordinates, Indi. Univ. Math. J., 62 (2013), 991-1020.doi: 10.1512/iumj.2013.62.4970.

    [3]

    J. Ginibre, Y. Tsutsumi and G. Velo, On the Cauchy problem for the Zakharov system, J. Funct. Anal., 151 (1997), 384-436.doi: 10.1006/jfan.1997.3148.

    [4]

    J. Ginibre and G. Velo, Generalized Strichartz inequalities for the wave equation, J. Funct. Anal., 133 (1995), 50-68.doi: 10.1006/jfan.1995.1119.

    [5]

    Z. Guo and K. Nakanishi, Small energy scattering for the Zakharov system with radial symmetry, Int. Math. Res. Not., 9 (2014), 2327-2342.

    [6]

    Z. Guo, K. Nakanishi and S. Wang, Small energy scattering for the Klein-Gordon-Zakharov system with radial symmetry, Math. Res. Nett., 21 (2014), 733-755.doi: 10.4310/MRL.2014.v21.n4.a8.

    [7]

    Z. Guo and Y. Wang, Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equation, J. Anal. Math., 124 (2014), 1-38.doi: 10.1007/s11854-014-0025-6.

    [8]

    M. Hadac, S. Herr and H. Koch, Well-posedness and scattering for the KP-II equation in a critical space, Ann. I. H. Poincaré AN, 26 (2009), 917-941.doi: 10.1016/j.anihpc.2008.04.002.

    [9]

    M. Hadac, S. Herr and H. Koch, Erratum to "Well-posedness and scattering for the KP-II equation in a critical space"[Ann. I. H. Poincaré AN, 26 (2009), 917-941], Ann. I. H. Poincar\'e AN, 27 (2010), 971-972.doi: 10.1016/j.anihpc.2008.04.002.

    [10]

    S. Herr, D. Tataru and N. Tzvetkov, Global well-posedness of the energy-critical nonlinear Schrödinger equation with small initial data in $H^1(T^3)$, Duke. Math. J., 159 (2011), 329-349.doi: 10.1215/00127094-1415889.

    [11]

    H. Hirayama, Well-posedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data, Comm. Pure. Appl. Anal., 13 (2014), 1563-1591.doi: 10.3934/cpaa.2014.13.1563.

    [12]

    T. Kato, An $L^{q,r}$-theory for nonlinear Schrödinger equations, Spectral and scattering theory and applications, Adv. Stud. Pure. Math., 23 (1994), 223-238.

    [13]

    I. Kato and K. Tsugawa, Scattering and well-posedness for the Zakharov system at a critical space in four and more spatial dimensions, preprint, arXiv:1512.00551.

    [14]

    J. Kato and T. Ozawa, Endpoint Strichartz estimates for the Klein-Gordon equation in two space dimensions and some applications, J. Math. Pures Appl., 95 (2011), 48-71.doi: 10.1016/j.matpur.2010.10.001.

    [15]

    C. Kenig, G. Ponce and L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Soc., 9 (1996), 573-603.doi: 10.1090/S0894-0347-96-00200-7.

    [16]

    M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980.

    [17]

    H. Koch and D. Tataru, Dispersive estimates for principally normal pseudodifferential operators, Comm. Pure. Appl. Math., 58 (2005), 217-284.doi: 10.1002/cpa.20067.

    [18]

    H. Koch and D. Tataru, A priori bounds for the 1D cubic NLS in negative Sobolev spaces, Int. Math. Res. Not., 16 (2007), article ID rnm053, 36 pages.doi: 10.1093/imrn/rnm053.

    [19]

    H. Lindblad, Counterexamples to local existence for semi-linear wave equations, Amer. J. Math., 118 (1996), 1-16.

    [20]

    H. Lindblad and C. Sogge, On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal., 130 (1995), 357-426.doi: 10.1006/jfan.1995.1075.

    [21]

    S. Machihara, K. Nakanishi and T. Ozawa, Nonrelativistic limit in the energy space for nonlinear Klein-Gordon equations, Math. Ann., 322 (2002), 603-621.doi: 10.1007/s002080200008.

    [22]

    S. Machihara, K. Nakanishi and T. Ozawa, Small global solutions and the nonrelativistic limit for the Dirac equation, Rev. Mat. Iberoamericana., 19 (2003), 179-194.doi: 10.4171/RMI/342.

    [23]

    N. Masmoudi and K. Nakanishi, From the Klein-Gordon-Zakharov system to the nonlinear Schrödinger equation, J. Hyperbolic Differ. Equ., 2 (2005), 975-1008.doi: 10.1142/S0219891605000683.

    [24]

    N. Masmoudi and K. Nakanishi, From the Klein-Gordon-Zakharov system to a singular nonlinear Schrödinger system, Ann. I. H. Poincaré AN, 27 (2010), 1073-1096.doi: 10.1016/j.anihpc.2010.02.002.

    [25]

    T. Ozawa, K. Tsutaya and Y. Tsutsumi, Normal form and global solutions for the Klein-Gordon-Zakharov equations, Ann. I. H. Poincaré AN, 12 (1995), 459-503.

    [26]

    T. Ozawa, K. Tsutaya and Y. Tsutsumi, Well-posedness in energy space for the Cauchy problem of the Klein-Gordon-Zakharov equations with different propagation speeds in three space dimensions, Math. Ann., 313 (1999), 127-140.doi: 10.1007/s002080050254.

    [27]

    T. Schottdorf, Global existence without decay for quadratic Klein-Gordon equations, preprint, arXiv:1209.1518.

    [28]

    T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis, in AMS, (2006).doi: 10.1090/cbms/106.

    [29]

    D. Tataru, Local and global results for wave maps I, Comm. Part. Diff. Eq., 23 (1998), 1781-1793.doi: 10.1080/03605309808821400.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(171) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return