\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Lyapunov type inequalities for $n$th order forced differential equations with mixed nonlinearities

Abstract Related Papers Cited by
  • In the case of oscillatory potentials, we present Lyapunov type inequalities for $n$th order forced differential equations of the form \begin{eqnarray} x^{(n)}(t)+\sum_{j=1}^{m}q_j(t)|x(t)|^{\alpha_j-1}x(t)=f(t) \end{eqnarray} satisfying the boundary conditions \begin{eqnarray} x(a_i)=x'(a_i)=x''(a_i)=\cdots=x^{(k_i)}(a_i)=0;\qquad i=1,2,\ldots,r, \end{eqnarray} where $a_1 < a_2 < \cdots < a_r$, $0\leq k_i$ and \begin{eqnarray} \sum_{j=1}^{r}k_j+r=n;\qquad r\geq 2. \end{eqnarray} No sign restriction is imposed on the forcing term and the nonlinearities satisfy \begin{eqnarray} 0 < \alpha_1 < \cdots < \alpha_j < 1 < \alpha_{j+1} < \cdots < \alpha_m < 2. \end{eqnarray} The obtained inequalities generalize and compliment the existing results in the literature.
    Mathematics Subject Classification: Primary: 34C10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. P. Agarwal, Boundary value problems for higher order integro-differential equations, Nonlinear Anal., 7 (1983), 259-270.doi: 10.1016/0362-546X(83)90070-6.

    [2]

    R. P. Agarwal, Some inequalities for a function having $n$ zeros. General inequalities, 3 (Oberwolfach, 1981), 371-378, Internat. Schriftenreihe Numer. Math., 64, Birkhäuser, Basel, 1983.

    [3]

    R. P. Agarwal, Boundary Value Problems for Higher Order Differential Equations, Singapore: World Scientific, 1986.doi: 10.1142/0266.

    [4]

    R. P. Agarwal and P. J. Y. Wong, Lidstone polynomial and boundary value problems, Computers Math. Applic., 17 (1989), 1397-1421.doi: 10.1016/0898-1221(89)90023-0.

    [5]

    R. P. Agarwal and P. J. Y. Wong, Error Inequalities in Polynomial Interpolation and Their Applications, Dordrecht, Boston, London: Kluwer Academic Publishers, 1993.doi: 10.1007/978-94-011-2026-5.

    [6]

    R. P. Agarwal, D. O'Regan, I. Rachunková and S. Staněk, Two-point higher-order BVPs with singularities in phase variables, Computers Math. Applic., 46 (2003), 1799-1826.doi: 10.1016/S0898-1221(03)90238-0.

    [7]

    R. P. Agarwal and P. J. Y. Wong, Eigenvalues of complementary Lidstone boundary value problems, Bound. Value Probl., 2012 (2012), 1-23.doi: 10.1186/1687-2770-2012-49.

    [8]

    R. P. Agarwal and A. Özbekler, Lyapunov type inequalities for second order sub and super-half-linear differential equations, Dynam. Systems Appl., 24 (2015), 211-220.

    [9]

    R. P. Agarwal and A. Özbekler, Lyapunov type inequalities for even order differential equations with mixed nonlinearities, J. Inequal. Appl., 2015 (2015), 142, 10 pp.doi: 10.1186/s13660-015-0633-4.

    [10]

    R. P. Agarwal and A. Özbekler, Disconjugacy via Lyapunov and Vallée-Poussin type inequalities for forced differential equations, Appl. Math. Comput., 265 (2015), 456-468.doi: 10.1016/j.amc.2015.05.038.

    [11]

    P. R. Beesack, On Green's function of an $N$-point boundary value problem, Pasific J. Math., 12 (1962), 801-812.

    [12]

    A. Beurling, Un théoréme sur les fonctions bornées et uniformément continues sur l'axe réel, Acta Math., 77 (1945), 127-136.

    [13]

    G. Borg, On a Liapunoff criterion of stability, Amer. J. Math., 71 (1949), 67-70.

    [14]

    R. C. Brown and D. B. Hinton, Opial's inequality and oscillation of 2nd order equations, Proc. Amer. Math. Soc., 125 (1997), 1123-1129.doi: 10.1090/S0002-9939-97-03907-5.

    [15]

    D. Cakmak, Lyapunov-type integral inequalities for certain higher order differential equations, Appl. Math. Comput., 216 (2010), 368-373.doi: 10.1016/j.amc.2010.01.010.

    [16]

    S. S. Cheng, A discrete analogue of the inequality of Lyapunov, Hokkaido Math., 12 (1983), 105-112.doi: 10.14492/hokmj/1381757783.

    [17]

    S. S. Cheng, Lyapunov inequalities for differential and difference equations, Fasc. Math., 23 (1991), 25-41.

    [18]

    R. S. Dahiya and B. Singh, A Liapunov inequality and nonoscillation theorem for a second order nonlinear differential-difference equations, J. Math. Phys. Sci., 7 (1973), 163-170.

    [19]

    K. M. Das and A. S. Vatsala, On the Green's function of an $n$-point boundary value problem, Trans. Amer. Math. Soc., 182 (1973), 469-480.

    [20]

    K. M. Das and A. S. Vatsala, Green function for $n-n$ boundary value problem and an analogue of Hartman's result, J. Math. Anal. Appl., 51 (1975), 670-677.

    [21]

    O. Došlý and P. Řehák, Half-Linear Differential Equations, Heidelberg: Elsevier Ltd, 2005.

    [22]

    A. Elbert, A half-linear second order differential equation, Colloq Math Soc János Bolyai, 30 (1979), 158-180.

    [23]

    S. B. Eliason, A Lyapunov inequality for a certain non-linear differential equation, J. London Math. Soc., 2 (1970), 461-466.

    [24]

    S. B. Eliason, Lyapunov type inequalities for certain second order functional differential equations, SIAM J. Appl. Math., 27 (1974), 180-199.

    [25]

    S. B. Eliason, Lyapunov inequalities and bounds on solutions of certain second order equations, Canad. Math. Bull., 17 (1974), 499-504.

    [26]

    G. G. Gustafson, A Green's function convergence principle, with applications to computation and norm estimates, Rocky Mountain J. Math., 6 (1976), 457-492.

    [27]

    G. S. Guseinov and B. Kaymakcalan, Lyapunov inequalities for discrete linear Hamiltonian systems, Comput. Math. Appl., 45 (2003), 1399-1416.doi: 10.1016/S0898-1221(03)00095-6.

    [28]

    G. S. Guseinov and A. Zafer, Stability criteria for linear periodic impulsive Hamiltonian systems, J. Math. Anal. Appl., 35 (2007), 1195-1206.doi: 10.1016/j.jmaa.2007.01.095.

    [29]

    P. Hartman, Ordinary Differential Equations, New York, 1964 and Birkhäuser, Boston: Wiley, 1982.

    [30]

    X. He and X. H. Tang, Lyapunov-type inequalities for even order differential equations, Commun. Pure. Appl. Anal., 11 (2012), 465-473.doi: 10.3934/cpaa.2012.11.465.

    [31]

    H. Hochstadt, A new proof of stability estimate of Lyapunov, Proc. Amer. Math. Soc., 14 (1963), 525-526.

    [32]

    L. Jiang and Z. Zhou, Lyapunov inequality for linear Hamiltonian systems on time scales, J. Math. Anal. Appl., 310 (2005), 579-593.doi: 10.1016/j.jmaa.2005.02.026.

    [33]

    S. Karlin, Total Positivity, Vol. I, Stanford California: Stanford University Press, 1968.

    [34]

    Z. Kayar and A. Zafer, Stability criteria for linear Hamiltonian systems under impulsive perturbations, Appl. Math. Comput., 230 (2014), 680-686.doi: 10.1016/j.amc.2013.12.128.

    [35]

    M. K. Kwong, On Lyapunov's inequality for disfocality, J. Math. Anal. Appl., 83 (1981), 486-494.doi: 10.1016/0022-247X(81)90137-2.

    [36]

    C. Lee, C. Yeh, C. Hong and R. P. Agarwal, Lyapunov and Wirtinger inequalities, Appl. Math. Lett., 17 (2004), 847-853.doi: 10.1016/j.aml.2004.06.016.

    [37]

    A. M. Liapunov, Probleme général de la stabilité du mouvement, (French Translation of a Russian paper dated 1893), Ann Fac Sci Univ Toulouse 2 (1907), 27-247, Reprinted as Ann Math Studies, No. 17, Princeton, 1947.

    [38]

    D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Inequalities Involving Functions and Their Integrals and Derivatives, Mathematics and its Applications (East European Series), Dordrecht: 53 Kluwer Academic Publishers Group, 1991.doi: 10.1007/978-94-011-3562-7.

    [39]

    P. L. Napoli and J. P. Pinasco, Estimates for eigenvalues of quasilinear elliptic systems, J. Differential Equations, 227 (2006), 102-115.doi: 10.1016/j.jde.2006.01.004.

    [40]

    Z. Nehari, Some eigenvalue estimates, J. Anal. Math., 7 (1959), 79-88.

    [41]

    Z. Nehari, On an inequality of Lyapunov, in: Studies in Mathematical Analysis and Related Topics, Stanford, CA: Stanford University Press, 1962.

    [42]

    B. G. Pachpatte, On Lyapunov-type inequalities for certain higher order differential equations, J. Anal. Math., 195 (1995), 527-536.doi: 10.1006/jmaa.1995.1372.

    [43]

    B. G. Pachpatte, Lyapunov type integral inequalities for certain differential equations, Georgian Math. J., 4 (1997), 139-148.doi: 10.1023/A:1022930116838.

    [44]

    B. G. Pachpatte, Inequalities related to the zeros of solutions of certain second order differential equations, Facta. Univ. Ser. Math. Inform., 16 (2001), 35-44.

    [45]

    S. Panigrahi, Lyapunov-type integral inequalities for certain higher order differential equations, Electron J Differential Equations, 2009 (2009), 1-14.

    [46]

    N. Parhi and S. Panigrahi, On Liapunov-type inequality for third-order differential equations, J. Math. Anal. Appl., 233 (1999), 445-460.doi: 10.1006/jmaa.1999.6265.

    [47]

    N. Parhi and S. Panigrahi, Liapunov-type inequality for higher order differential equations, Math. Slovaca, 52 (2002), 31-46.

    [48]

    T. W. Reid, A matrix equation related to an non-oscillation criterion and Lyapunov stability, Quart. Appl. Math. Soc., 23 (1965), 83-87.

    [49]

    T. W. Reid, A matrix Lyapunov inequality, J. Math. Anal. Appl., 32 (1970), 424-434.

    [50]

    B. Singh, Forced oscillation in general ordinary differential equations, Tamkang J. Math., 6 (1975), 5-11.

    [51]

    A. Tiryaki, M. Unal and D. Cakmak, Lyapunov-type inequalities for nonlinear systems, J. Math. Anal. Appl., 332 (2007), 497-511.doi: 10.1016/j.jmaa.2006.10.010.

    [52]

    A. Tiryaki, Recent developments of Lyapunov-type inequalities, Advances in Dynam. Sys. Appl., 5 (2010), 231-248.

    [53]

    M. Unal, D. Cakmak and A. Tiryaki, A discrete analogue of Lyapunov-type inequalities for nonlinear systems, Comput. Math. Appl., 55 (2008), 2631-2642.doi: 10.1016/j.camwa.2007.10.014.

    [54]

    M. Unal and D. Cakmak, Lyapunov-type inequalities for certain nonlinear systems on time scales, Turkish J. Math., 32 (2008), 255-275.

    [55]

    X. Yang, On Liapunov-type inequality for certain higher-order differential equations, Appl. Math. Comput., 134 (2003), 307-317.doi: 10.1016/S0096-3003(01)00285-5.

    [56]

    X. Yang, Lyapunov-type inequality for a class of even-order differential equations, Appl. Math. Comput., 215 (2010), 3884-3890.doi: 10.1016/j.amc.2009.11.032.

    [57]

    A. Wintner, On the nonexistence of conjugate points, Amer. J. Math., 73 (1951), 368-380.

    [58]

    Q. M. Zhang and X. He, Lyapunov-type inequalities for a class of even-order differential equations, J. Inequal. Appl., 2012 (2012), 1-7.doi: 10.1186/1029-242X-2012-5.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(216) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return