Citation: |
[1] |
R. P. Agarwal, Boundary value problems for higher order integro-differential equations, Nonlinear Anal., 7 (1983), 259-270.doi: 10.1016/0362-546X(83)90070-6. |
[2] |
R. P. Agarwal, Some inequalities for a function having $n$ zeros. General inequalities, 3 (Oberwolfach, 1981), 371-378, Internat. Schriftenreihe Numer. Math., 64, Birkhäuser, Basel, 1983. |
[3] |
R. P. Agarwal, Boundary Value Problems for Higher Order Differential Equations, Singapore: World Scientific, 1986.doi: 10.1142/0266. |
[4] |
R. P. Agarwal and P. J. Y. Wong, Lidstone polynomial and boundary value problems, Computers Math. Applic., 17 (1989), 1397-1421.doi: 10.1016/0898-1221(89)90023-0. |
[5] |
R. P. Agarwal and P. J. Y. Wong, Error Inequalities in Polynomial Interpolation and Their Applications, Dordrecht, Boston, London: Kluwer Academic Publishers, 1993.doi: 10.1007/978-94-011-2026-5. |
[6] |
R. P. Agarwal, D. O'Regan, I. Rachunková and S. Staněk, Two-point higher-order BVPs with singularities in phase variables, Computers Math. Applic., 46 (2003), 1799-1826.doi: 10.1016/S0898-1221(03)90238-0. |
[7] |
R. P. Agarwal and P. J. Y. Wong, Eigenvalues of complementary Lidstone boundary value problems, Bound. Value Probl., 2012 (2012), 1-23.doi: 10.1186/1687-2770-2012-49. |
[8] |
R. P. Agarwal and A. Özbekler, Lyapunov type inequalities for second order sub and super-half-linear differential equations, Dynam. Systems Appl., 24 (2015), 211-220. |
[9] |
R. P. Agarwal and A. Özbekler, Lyapunov type inequalities for even order differential equations with mixed nonlinearities, J. Inequal. Appl., 2015 (2015), 142, 10 pp.doi: 10.1186/s13660-015-0633-4. |
[10] |
R. P. Agarwal and A. Özbekler, Disconjugacy via Lyapunov and Vallée-Poussin type inequalities for forced differential equations, Appl. Math. Comput., 265 (2015), 456-468.doi: 10.1016/j.amc.2015.05.038. |
[11] |
P. R. Beesack, On Green's function of an $N$-point boundary value problem, Pasific J. Math., 12 (1962), 801-812. |
[12] |
A. Beurling, Un théoréme sur les fonctions bornées et uniformément continues sur l'axe réel, Acta Math., 77 (1945), 127-136. |
[13] |
G. Borg, On a Liapunoff criterion of stability, Amer. J. Math., 71 (1949), 67-70. |
[14] |
R. C. Brown and D. B. Hinton, Opial's inequality and oscillation of 2nd order equations, Proc. Amer. Math. Soc., 125 (1997), 1123-1129.doi: 10.1090/S0002-9939-97-03907-5. |
[15] |
D. Cakmak, Lyapunov-type integral inequalities for certain higher order differential equations, Appl. Math. Comput., 216 (2010), 368-373.doi: 10.1016/j.amc.2010.01.010. |
[16] |
S. S. Cheng, A discrete analogue of the inequality of Lyapunov, Hokkaido Math., 12 (1983), 105-112.doi: 10.14492/hokmj/1381757783. |
[17] |
S. S. Cheng, Lyapunov inequalities for differential and difference equations, Fasc. Math., 23 (1991), 25-41. |
[18] |
R. S. Dahiya and B. Singh, A Liapunov inequality and nonoscillation theorem for a second order nonlinear differential-difference equations, J. Math. Phys. Sci., 7 (1973), 163-170. |
[19] |
K. M. Das and A. S. Vatsala, On the Green's function of an $n$-point boundary value problem, Trans. Amer. Math. Soc., 182 (1973), 469-480. |
[20] |
K. M. Das and A. S. Vatsala, Green function for $n-n$ boundary value problem and an analogue of Hartman's result, J. Math. Anal. Appl., 51 (1975), 670-677. |
[21] |
O. Došlý and P. Řehák, Half-Linear Differential Equations, Heidelberg: Elsevier Ltd, 2005. |
[22] |
A. Elbert, A half-linear second order differential equation, Colloq Math Soc János Bolyai, 30 (1979), 158-180. |
[23] |
S. B. Eliason, A Lyapunov inequality for a certain non-linear differential equation, J. London Math. Soc., 2 (1970), 461-466. |
[24] |
S. B. Eliason, Lyapunov type inequalities for certain second order functional differential equations, SIAM J. Appl. Math., 27 (1974), 180-199. |
[25] |
S. B. Eliason, Lyapunov inequalities and bounds on solutions of certain second order equations, Canad. Math. Bull., 17 (1974), 499-504. |
[26] |
G. G. Gustafson, A Green's function convergence principle, with applications to computation and norm estimates, Rocky Mountain J. Math., 6 (1976), 457-492. |
[27] |
G. S. Guseinov and B. Kaymakcalan, Lyapunov inequalities for discrete linear Hamiltonian systems, Comput. Math. Appl., 45 (2003), 1399-1416.doi: 10.1016/S0898-1221(03)00095-6. |
[28] |
G. S. Guseinov and A. Zafer, Stability criteria for linear periodic impulsive Hamiltonian systems, J. Math. Anal. Appl., 35 (2007), 1195-1206.doi: 10.1016/j.jmaa.2007.01.095. |
[29] |
P. Hartman, Ordinary Differential Equations, New York, 1964 and Birkhäuser, Boston: Wiley, 1982. |
[30] |
X. He and X. H. Tang, Lyapunov-type inequalities for even order differential equations, Commun. Pure. Appl. Anal., 11 (2012), 465-473.doi: 10.3934/cpaa.2012.11.465. |
[31] |
H. Hochstadt, A new proof of stability estimate of Lyapunov, Proc. Amer. Math. Soc., 14 (1963), 525-526. |
[32] |
L. Jiang and Z. Zhou, Lyapunov inequality for linear Hamiltonian systems on time scales, J. Math. Anal. Appl., 310 (2005), 579-593.doi: 10.1016/j.jmaa.2005.02.026. |
[33] |
S. Karlin, Total Positivity, Vol. I, Stanford California: Stanford University Press, 1968. |
[34] |
Z. Kayar and A. Zafer, Stability criteria for linear Hamiltonian systems under impulsive perturbations, Appl. Math. Comput., 230 (2014), 680-686.doi: 10.1016/j.amc.2013.12.128. |
[35] |
M. K. Kwong, On Lyapunov's inequality for disfocality, J. Math. Anal. Appl., 83 (1981), 486-494.doi: 10.1016/0022-247X(81)90137-2. |
[36] |
C. Lee, C. Yeh, C. Hong and R. P. Agarwal, Lyapunov and Wirtinger inequalities, Appl. Math. Lett., 17 (2004), 847-853.doi: 10.1016/j.aml.2004.06.016. |
[37] |
A. M. Liapunov, Probleme général de la stabilité du mouvement, (French Translation of a Russian paper dated 1893), Ann Fac Sci Univ Toulouse 2 (1907), 27-247, Reprinted as Ann Math Studies, No. 17, Princeton, 1947. |
[38] |
D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Inequalities Involving Functions and Their Integrals and Derivatives, Mathematics and its Applications (East European Series), Dordrecht: 53 Kluwer Academic Publishers Group, 1991.doi: 10.1007/978-94-011-3562-7. |
[39] |
P. L. Napoli and J. P. Pinasco, Estimates for eigenvalues of quasilinear elliptic systems, J. Differential Equations, 227 (2006), 102-115.doi: 10.1016/j.jde.2006.01.004. |
[40] |
Z. Nehari, Some eigenvalue estimates, J. Anal. Math., 7 (1959), 79-88. |
[41] |
Z. Nehari, On an inequality of Lyapunov, in: Studies in Mathematical Analysis and Related Topics, Stanford, CA: Stanford University Press, 1962. |
[42] |
B. G. Pachpatte, On Lyapunov-type inequalities for certain higher order differential equations, J. Anal. Math., 195 (1995), 527-536.doi: 10.1006/jmaa.1995.1372. |
[43] |
B. G. Pachpatte, Lyapunov type integral inequalities for certain differential equations, Georgian Math. J., 4 (1997), 139-148.doi: 10.1023/A:1022930116838. |
[44] |
B. G. Pachpatte, Inequalities related to the zeros of solutions of certain second order differential equations, Facta. Univ. Ser. Math. Inform., 16 (2001), 35-44. |
[45] |
S. Panigrahi, Lyapunov-type integral inequalities for certain higher order differential equations, Electron J Differential Equations, 2009 (2009), 1-14. |
[46] |
N. Parhi and S. Panigrahi, On Liapunov-type inequality for third-order differential equations, J. Math. Anal. Appl., 233 (1999), 445-460.doi: 10.1006/jmaa.1999.6265. |
[47] |
N. Parhi and S. Panigrahi, Liapunov-type inequality for higher order differential equations, Math. Slovaca, 52 (2002), 31-46. |
[48] |
T. W. Reid, A matrix equation related to an non-oscillation criterion and Lyapunov stability, Quart. Appl. Math. Soc., 23 (1965), 83-87. |
[49] |
T. W. Reid, A matrix Lyapunov inequality, J. Math. Anal. Appl., 32 (1970), 424-434. |
[50] |
B. Singh, Forced oscillation in general ordinary differential equations, Tamkang J. Math., 6 (1975), 5-11. |
[51] |
A. Tiryaki, M. Unal and D. Cakmak, Lyapunov-type inequalities for nonlinear systems, J. Math. Anal. Appl., 332 (2007), 497-511.doi: 10.1016/j.jmaa.2006.10.010. |
[52] |
A. Tiryaki, Recent developments of Lyapunov-type inequalities, Advances in Dynam. Sys. Appl., 5 (2010), 231-248. |
[53] |
M. Unal, D. Cakmak and A. Tiryaki, A discrete analogue of Lyapunov-type inequalities for nonlinear systems, Comput. Math. Appl., 55 (2008), 2631-2642.doi: 10.1016/j.camwa.2007.10.014. |
[54] |
M. Unal and D. Cakmak, Lyapunov-type inequalities for certain nonlinear systems on time scales, Turkish J. Math., 32 (2008), 255-275. |
[55] |
X. Yang, On Liapunov-type inequality for certain higher-order differential equations, Appl. Math. Comput., 134 (2003), 307-317.doi: 10.1016/S0096-3003(01)00285-5. |
[56] |
X. Yang, Lyapunov-type inequality for a class of even-order differential equations, Appl. Math. Comput., 215 (2010), 3884-3890.doi: 10.1016/j.amc.2009.11.032. |
[57] |
A. Wintner, On the nonexistence of conjugate points, Amer. J. Math., 73 (1951), 368-380. |
[58] |
Q. M. Zhang and X. He, Lyapunov-type inequalities for a class of even-order differential equations, J. Inequal. Appl., 2012 (2012), 1-7.doi: 10.1186/1029-242X-2012-5. |