Citation: |
[1] |
M. C. Bento, O. Bertolami and A. A. Sen, Generalized Chaplygin gas, accelerated expansion and dark energy-matter unification, Phys. Rev. D, 66 (2002), 043507.doi: 10.1103/PhysRevD.66.043507. |
[2] |
N. Bilic, R. J. Lindebaum, G. B. Tupper and R. D. Viollier, Nonlinear evolution of dark matter and dark energy in the Chaplygin gas cosmology, J. Cosmol. Astropart. Phys., 57 (2004), 1238-1243.doi: 10.1088/1475-7516/2004/11/008. |
[3] |
N. Bilic, G. B. Tupper and R. D. Viollier, Dark matter, dark energy and the Chaplygin gas}, arXiv:astro-ph/0207423. doi: arXiv:astro-ph/0207423. |
[4] |
Y. Brenier, Solutions with concentration to the Riemann problem for one-dimensional Chaplygin gas equations, J. Math. Fluid Mech., 7 (2005), S326-S331.doi: 10.1007/s00021-005-0162-x. |
[5] |
A. Bressan, Hyperbolic Systems of Conservation Laws, Oxford University Press, Oxford, 2000.doi: 0-19-850700-3 . |
[6] |
T. Chang and L. Hsiao, The Riemann Problem and Interaction of Waves in Gas Dynamics, Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 41, New York: Longman Scientific and Technical, 1989.doi: 0-582-01378-X . |
[7] |
S. Chaplygin, On gas jets, Sci. Mem. Moscow Univ. Math. Phys., 21 (1904), 1-121.doi: http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:33.0789.01. |
[8] |
G.-Q. Chen and Y. Li, Stability of Riemann solutions with large oscillation for the relativistic Euler equations, J. Differential Equations, 202 (2004), 332-353.doi: 10.1016/j.jde.2004.02.009. |
[9] |
G.-Q. Chen and H. Liu, Formation of $\delta$-shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids, SIAM J. Math. Anal., 34 (2003), 925-938.doi: 10.1137/S0036141001399350. |
[10] |
G.-Q. Chen and H. Liu, Concentration and cavitation in the vanishing pressure limit of solutions to the Euler equations for nonisentropic fluids, Phys. D, 189 (2004), 141-165.doi: 10.1016/j.physd.2003.09.039. |
[11] |
H. Cheng and H. Yang, Riemann problem for the relativistic Chaplygin Euler equations, J. Math. Anal. Appl., 381 (2011), 17-26.doi: 10.1016/j.jmaa.2011.04.017. |
[12] |
Norman Cruz, Samuel Lepe and Francisco Pena, Dissipative generalized Chaplygin gas as phantom dark energy Physics, Phys. Lett. B, 646 (2007), 177-182.doi: 10.1016/j.physletb.2006.12.070. |
[13] |
V. Gorini, A. Kamenshchik, U. Moschella and V. Pasquier, The chaplygin gas as an model for dark energy, arXiv:gr-qc/0403062. doi: arXiv:gr-qc/0403062. |
[14] |
L. Guo, W. Sheng and T. Zhang, The two-dimensional Riemann problem for isentropic Chaplygin gas dynamic system, Commun. Pure Appl. Anal., 9 (2010), 431-458.doi: 10.2307/2152750. |
[15] |
C. H. Hsu, S. S. Lin and T. Makino, On the relativistic Euler equation, Methods Appl. Anal., 8 (2001), 159-207.doi: 10.4310/MAA.2001.v8.n1.a7. |
[16] |
M. Huang and Z. Shao, Riemann problem for the relativistic generalized Chaplygin Euler equations, Commun. Pure Appl. Anal., 15 (2016), 127-138. |
[17] |
M. Huang and Z. Shao, Riemann problem with delta initial data for the relativistic Chaplygin Euler equations, J. Appl. Anal. Comput., 6 (2016), 376-395. |
[18] |
T. von Karman, Compressibility effects in aerodynamics, J. Aeronaut. Sci., 8 (1941), 337-356.doi: http://dx.doi.org/10.2514/2.7046. |
[19] |
Jiequan Li, Note on the compressible Euler equations with zero temperature, Appl. Math. Lett., 14 (2001), 519-523.doi: 10.1016/S0893-9659(00)00187-7. |
[20] |
Y. Li, D. Feng and Z. Wang, Global entropy solutions to the relativistic Euler equations for a class of large initial data, Z. Angew. Math. Phys., 56 (2005), 239-253.doi: 10.1007/s00033-005-4118-2. |
[21] |
D. Mitrovic and M. Nedeljkov, Delta-shock waves as a limit of shock waves, J. Hyperbolic Differ. Equ., 4 (2007), 629-653.doi: 10.1142/S021989160700129X . |
[22] |
D. Serre, Multidimensional shock interaction for a Chaplygin gas, Arch. Ration. Mech. Anal., 191 (2009), 539-577. |
[23] |
M.R. Setare, Holographic Chaplygin gas model, Phys. Lett. B, 648 (2007), 329-332.doi: doi:10.1016/j.physletb.2007.03.025. |
[24] |
M. R. Setare, Interacting holographic generalized Chaplygin gas model, Phys. Lett. B, 654 (2007), 1-6.doi: doi:10.1016/j.physletb.2007.08.038. |
[25] |
Z. Shao, Riemann problem with delta initial data for the isentropic relativistic Chaplygin Euler equations, Z. Angew. Math. Phys., 67 (2016), 1-24.doi: 10.1007/s00033-016-0663-x. |
[26] |
C. Shen, The limits of Riemann solutions to the isentropic magnetogasdynamics, Appl. Math. Lett., 24 (2011), 1124-1129.doi: 10.1016/j.aml.2011.01.038. |
[27] |
C. Shen and M. Sun, Formation of delta shocks and vacuum states in the vanishing pressure limit of Riemann solutions to the perturbed Aw-Rascle model, J. Differential Equations, 249 (2010), 3024-3051.doi: 10.1016/j.jde.2010.09.004. |
[28] |
W. Sheng, G. Wang and G. Yin, Delta wave and vacuum state for generalized Chaplygin gas dynamics system as pressure vanishes, Nonlinear Anal. RWA, 22 (2015), 115-128.doi: doi:10.1016/j.nonrwa.2014.08.007. |
[29] |
W. Sheng and T. Zhang, The Riemann problem for the transportation equations in gas dynamics, in Mem. Amer. Math. Soc., 137, AMS, Providence, 1999.doi: 10.1090/memo/0654. |
[30] |
J. Smoller and B. Temple, Global solutions of the relativistic Euler equations, Comm. Math. Phys, 156 (1993), 67-99.doi: 10.1007/BF02096733. |
[31] |
A. H. Taub, Approximate solutions of the Einstein equations for isentropic motions of plane-symmetric distributions of perfect fluids, Phys. Rev., 107 (1957), 884-900.doi: 10.1103/PhysRev.107.884. |
[32] |
K. Thompson, The special relativistic shock tube, J. Fluid Mech., 171 (1986), 365-375.doi: 10.1017/S0022112086001489. |
[33] |
K. S. Thorne, Relativistic shocks: the Taub adiabatic, Astrophys. J., 179 (1973), 897-907.doi: 10.1086/151927. |
[34] |
H. S. Tsien, Two dimensional subsonic flow of compressible fluids, J. Aeronaut. Sci., 6 (1939), 399-407.doi: 10.2514/8.916. |
[35] |
G. Wang, The Riemann problem for one dimensional generalized Chaplygin gas dynamics, J. Math. Anal. Appl., 403 (2013), 434-450.doi: 10.1016/j.jmaa.2013.02.026. |
[36] |
S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, Wiley, New York, 1972.doi: 978-0-471-92567-5. |
[37] |
H. Yang and J. Wang, Delta-shocks and vacuum states in the vanishing pressure limit of solutions to the isentropic Euler equations for modified Chaplygin gas, J. Math. Anal. Appl., 413 (2014), 800-820.doi: 10.1016/j.jmaa.2013.12.025. |
[38] |
G. Yin and W. Sheng, Delta shocks and vacuum states in vanishing pressure limits of solutions to the relativistic Euler equations for polytropic gases, J. Math. Anal. Appl., 355 (2009), 594-605.doi: 10.1016/j.jmaa.2009.01.075. |
[39] |
G. Yin and K. Song, Vanishing pressure limits of Riemann solutions to the isentropic relativistic Euler system for Chaplygin gas, J. Math. Anal. Appl., 411 (2014), 506-521.doi: 10.1016/j.jmaa.2013.09.050. |
[40] |
G. Yin and K. Song, Limits of Riemann solutions to the relativistic Euler systems for Chaplygin gas as pressure vanishes, Abstr. Appl. Anal., 2013 (2013), 296361.doi: 10.1155/2013/296361. |
[41] |
X. Zhang, F.-Q. Wu and J. Zhang, New generalized Chaplygin gas as a scheme for unification of dark energy and dark matter, J. Cosmol. Astropart. Phys., 2006 (2006), 731-750.doi: 10.1088/1475-7516/2006/01/003. |