\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Delta shocks and vacuum states in vanishing pressure limits of solutions to the relativistic Euler equations for generalized Chaplygin gas

Abstract Related Papers Cited by
  • The Riemann solutions for the relativistic Euler equations for generalized Chaplygin gas are considered. It is rigorously proved that, as the pressure vanishes, they tend to the two kinds of Riemann solutions to the zero-pressure relativistic Euler equations, which include a delta shock formed by a weighted $\delta$-measure and a vacuum state.
    Mathematics Subject Classification: 35L65, 35L67.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. C. Bento, O. Bertolami and A. A. Sen, Generalized Chaplygin gas, accelerated expansion and dark energy-matter unification, Phys. Rev. D, 66 (2002), 043507.doi: 10.1103/PhysRevD.66.043507.

    [2]

    N. Bilic, R. J. Lindebaum, G. B. Tupper and R. D. Viollier, Nonlinear evolution of dark matter and dark energy in the Chaplygin gas cosmology, J. Cosmol. Astropart. Phys., 57 (2004), 1238-1243.doi: 10.1088/1475-7516/2004/11/008.

    [3]

    N. Bilic, G. B. Tupper and R. D. Viollier, Dark matter, dark energy and the Chaplygin gas}, arXiv:astro-ph/0207423. doi: arXiv:astro-ph/0207423.

    [4]

    Y. Brenier, Solutions with concentration to the Riemann problem for one-dimensional Chaplygin gas equations, J. Math. Fluid Mech., 7 (2005), S326-S331.doi: 10.1007/s00021-005-0162-x.

    [5]

    A. Bressan, Hyperbolic Systems of Conservation Laws, Oxford University Press, Oxford, 2000.doi: 0-19-850700-3 .

    [6]

    T. Chang and L. Hsiao, The Riemann Problem and Interaction of Waves in Gas Dynamics, Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 41, New York: Longman Scientific and Technical, 1989.doi: 0-582-01378-X .

    [7]

    S. Chaplygin, On gas jets, Sci. Mem. Moscow Univ. Math. Phys., 21 (1904), 1-121.doi: http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:33.0789.01.

    [8]

    G.-Q. Chen and Y. Li, Stability of Riemann solutions with large oscillation for the relativistic Euler equations, J. Differential Equations, 202 (2004), 332-353.doi: 10.1016/j.jde.2004.02.009.

    [9]

    G.-Q. Chen and H. Liu, Formation of $\delta$-shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids, SIAM J. Math. Anal., 34 (2003), 925-938.doi: 10.1137/S0036141001399350.

    [10]

    G.-Q. Chen and H. Liu, Concentration and cavitation in the vanishing pressure limit of solutions to the Euler equations for nonisentropic fluids, Phys. D, 189 (2004), 141-165.doi: 10.1016/j.physd.2003.09.039.

    [11]

    H. Cheng and H. Yang, Riemann problem for the relativistic Chaplygin Euler equations, J. Math. Anal. Appl., 381 (2011), 17-26.doi: 10.1016/j.jmaa.2011.04.017.

    [12]

    Norman Cruz, Samuel Lepe and Francisco Pena, Dissipative generalized Chaplygin gas as phantom dark energy Physics, Phys. Lett. B, 646 (2007), 177-182.doi: 10.1016/j.physletb.2006.12.070.

    [13]

    V. Gorini, A. Kamenshchik, U. Moschella and V. Pasquier, The chaplygin gas as an model for dark energy, arXiv:gr-qc/0403062. doi: arXiv:gr-qc/0403062.

    [14]

    L. Guo, W. Sheng and T. Zhang, The two-dimensional Riemann problem for isentropic Chaplygin gas dynamic system, Commun. Pure Appl. Anal., 9 (2010), 431-458.doi: 10.2307/2152750.

    [15]

    C. H. Hsu, S. S. Lin and T. Makino, On the relativistic Euler equation, Methods Appl. Anal., 8 (2001), 159-207.doi: 10.4310/MAA.2001.v8.n1.a7.

    [16]

    M. Huang and Z. Shao, Riemann problem for the relativistic generalized Chaplygin Euler equations, Commun. Pure Appl. Anal., 15 (2016), 127-138.

    [17]

    M. Huang and Z. Shao, Riemann problem with delta initial data for the relativistic Chaplygin Euler equations, J. Appl. Anal. Comput., 6 (2016), 376-395.

    [18]

    T. von Karman, Compressibility effects in aerodynamics, J. Aeronaut. Sci., 8 (1941), 337-356.doi: http://dx.doi.org/10.2514/2.7046.

    [19]

    Jiequan Li, Note on the compressible Euler equations with zero temperature, Appl. Math. Lett., 14 (2001), 519-523.doi: 10.1016/S0893-9659(00)00187-7.

    [20]

    Y. Li, D. Feng and Z. Wang, Global entropy solutions to the relativistic Euler equations for a class of large initial data, Z. Angew. Math. Phys., 56 (2005), 239-253.doi: 10.1007/s00033-005-4118-2.

    [21]

    D. Mitrovic and M. Nedeljkov, Delta-shock waves as a limit of shock waves, J. Hyperbolic Differ. Equ., 4 (2007), 629-653.doi: 10.1142/S021989160700129X .

    [22]

    D. Serre, Multidimensional shock interaction for a Chaplygin gas, Arch. Ration. Mech. Anal., 191 (2009), 539-577.

    [23]

    M.R. Setare, Holographic Chaplygin gas model, Phys. Lett. B, 648 (2007), 329-332.doi: doi:10.1016/j.physletb.2007.03.025.

    [24]

    M. R. Setare, Interacting holographic generalized Chaplygin gas model, Phys. Lett. B, 654 (2007), 1-6.doi: doi:10.1016/j.physletb.2007.08.038.

    [25]

    Z. Shao, Riemann problem with delta initial data for the isentropic relativistic Chaplygin Euler equations, Z. Angew. Math. Phys., 67 (2016), 1-24.doi: 10.1007/s00033-016-0663-x.

    [26]

    C. Shen, The limits of Riemann solutions to the isentropic magnetogasdynamics, Appl. Math. Lett., 24 (2011), 1124-1129.doi: 10.1016/j.aml.2011.01.038.

    [27]

    C. Shen and M. Sun, Formation of delta shocks and vacuum states in the vanishing pressure limit of Riemann solutions to the perturbed Aw-Rascle model, J. Differential Equations, 249 (2010), 3024-3051.doi: 10.1016/j.jde.2010.09.004.

    [28]

    W. Sheng, G. Wang and G. Yin, Delta wave and vacuum state for generalized Chaplygin gas dynamics system as pressure vanishes, Nonlinear Anal. RWA, 22 (2015), 115-128.doi: doi:10.1016/j.nonrwa.2014.08.007.

    [29]

    W. Sheng and T. Zhang, The Riemann problem for the transportation equations in gas dynamics, in Mem. Amer. Math. Soc., 137, AMS, Providence, 1999.doi: 10.1090/memo/0654.

    [30]

    J. Smoller and B. Temple, Global solutions of the relativistic Euler equations, Comm. Math. Phys, 156 (1993), 67-99.doi: 10.1007/BF02096733.

    [31]

    A. H. Taub, Approximate solutions of the Einstein equations for isentropic motions of plane-symmetric distributions of perfect fluids, Phys. Rev., 107 (1957), 884-900.doi: 10.1103/PhysRev.107.884.

    [32]

    K. Thompson, The special relativistic shock tube, J. Fluid Mech., 171 (1986), 365-375.doi: 10.1017/S0022112086001489.

    [33]

    K. S. Thorne, Relativistic shocks: the Taub adiabatic, Astrophys. J., 179 (1973), 897-907.doi: 10.1086/151927.

    [34]

    H. S. Tsien, Two dimensional subsonic flow of compressible fluids, J. Aeronaut. Sci., 6 (1939), 399-407.doi: 10.2514/8.916.

    [35]

    G. Wang, The Riemann problem for one dimensional generalized Chaplygin gas dynamics, J. Math. Anal. Appl., 403 (2013), 434-450.doi: 10.1016/j.jmaa.2013.02.026.

    [36]

    S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, Wiley, New York, 1972.doi:  978-0-471-92567-5.

    [37]

    H. Yang and J. Wang, Delta-shocks and vacuum states in the vanishing pressure limit of solutions to the isentropic Euler equations for modified Chaplygin gas, J. Math. Anal. Appl., 413 (2014), 800-820.doi: 10.1016/j.jmaa.2013.12.025.

    [38]

    G. Yin and W. Sheng, Delta shocks and vacuum states in vanishing pressure limits of solutions to the relativistic Euler equations for polytropic gases, J. Math. Anal. Appl., 355 (2009), 594-605.doi: 10.1016/j.jmaa.2009.01.075.

    [39]

    G. Yin and K. Song, Vanishing pressure limits of Riemann solutions to the isentropic relativistic Euler system for Chaplygin gas, J. Math. Anal. Appl., 411 (2014), 506-521.doi: 10.1016/j.jmaa.2013.09.050.

    [40]

    G. Yin and K. Song, Limits of Riemann solutions to the relativistic Euler systems for Chaplygin gas as pressure vanishes, Abstr. Appl. Anal., 2013 (2013), 296361.doi: 10.1155/2013/296361.

    [41]

    X. Zhang, F.-Q. Wu and J. Zhang, New generalized Chaplygin gas as a scheme for unification of dark energy and dark matter, J. Cosmol. Astropart. Phys., 2006 (2006), 731-750.doi:  10.1088/1475-7516/2006/01/003.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(183) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return