\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Multiplicity and concentration of positive solutions for semilinear elliptic equations with steep potential

Abstract Related Papers Cited by
  • In this paper, we study the existence, multiplicity and concentration of positive solutions for the following indefinite semilinear elliptic equations involving concave-convex nonlinearities: \begin{eqnarray} \left\{\begin{array}{l} -\Delta u+V_{\lambda }\left( x\right) u=f\left( x\right) \left\vert u\right\vert ^{q-2}u+g\left( x\right) \left\vert u\right\vert ^{p-2}u & \text{in }\mathbb{R}^{N}, \\ u\geq 0, & \text{in }\mathbb{R}^{N}, \end{array}\right. \end{eqnarray} where$ 1 < q < 2 < p < 2^{\ast} (2^{\ast } = \frac{2N}{N-2}$ for $N \geq 3) $ the potential $V_{\lambda }(x)=\lambda V^{+}(x)-V^{-}(x)$ with $ V^{\pm }=\max \left\{ \pm V,0\right\} $ and the parameter $\lambda >0.$ We assume that the functions $f,g$ and $V$ satisfy suitable conditions with the potential $V$ and the weight function $g$ without the assumptions of infinite limits.
    Mathematics Subject Classification: Primary: 35J20; Secondary: 35J65.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Ambrosetti, G. J. Azorero and I. Peral, Multiplicity results for some nonlinear elliptic equations, J. Funct. Anal., 137 (1996), 219-242.doi: 10.1006/jfan.1996.0045.

    [2]

    A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543.doi: 10.1006/jfan.1994.1078.

    [3]

    Adimurthy, F. Pacella and L. Yadava, On the number of positive solutions of some semilinear Dirichlet problems in a ball, Diff. Int. Equations, 10 (1997), 1157-1170.

    [4]

    P. A. Binding, P. Drábek and Y. X. Huang, On Neumann boundary value problems for some quasilinear elliptic equations, Electr. J. Diff. Eqns., 5 (1997), 1-11.

    [5]

    T. Bartsch, A. Pankov and Z. Q. Wang, Nonlinear Schrödinger equations with steep potential well, Commun. Contemp. Math., 3 (2001), 549-569.doi: 10.1142/S0219199701000494.

    [6]

    T. Bartsch and Z. Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on $\mathbbR^N$, Comm. Partial Differential Equations, 20 (1995), 1725-1741.doi: 10.1080/03605309508821149.

    [7]

    K. J. Brown and T. F. Wu, A fibering map approach to a semilinear elliptic boundary value problem, Electr. J. Diff. Eqns., 69 (2007), 1-9.

    [8]

    K. J. Brown and T. F. Wu, A fibering map approach to a potential operator equation and its applications, Diff. Int. Equations, 22 (2009), 1097-1114.

    [9]

    K. J. Brown and Y. Zhang, The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function, J. Diff. Equns, 193 (2003), 481-499.doi: 10.1016/S0022-0396(03)00121-9.

    [10]

    J. Chabrowski and João Marcos Bezzera do Ó, On semilinear elliptic equations involving concave and convex nonlinearities, Math. Nachr., 233-234 (2002), 55-76.doi: 10.1002/1522-2616(200201)233:1<55::AID-MANA55>3.3.CO;2-I.

    [11]

    C. Y. Chen and T. F. Wu, Multiple positive solutions for indefinite semilinear elliptic problems involving a critical Sobolev exponent, Proc. Roy. Soc. Edinburgh Sect., 144A (2014), 691-709.doi: 10.1017/S0308210512000133.

    [12]

    L. Damascelli, M. Grossi and F. Pacella, Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle, Annls Inst. H. Poincaré Analyse Non linéaire, 16 (1999), 631-652.doi: 10.1016/S0294-1449(99)80030-4.

    [13]

    P. Drábek and S. I. Pohozaev, Positive solutions for the $p$ -Laplacian: application of the fibering method, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 703-726.doi: 10.1017/S0308210500023787.

    [14]

    Y. H. Ding and A. Szulkin, Bound states for semilinear Schrödinger equations with sign-changing potential, Calc. Var. Partial Differential Equations, 29 (2007), 397-419.doi: 10.1007/s00526-006-0071-8.

    [15]

    I. Ekeland, On the variational principle, J. Math. Anal. Appl., 17 (1974), 324-353.

    [16]

    D. G. de Figueiredo, J. P. Gossez and P. Ubilla, Local superlinearity and sublinearity for indefinite semilinear elliptic problems, J. Funct. Anal., 199 (2003), 452-467.doi: 10.1016/S0022-1236(02)00060-5.

    [17]

    J. V. Goncalves and O. H. Miyagaki, Multiple positive solutions for semilinear elliptic equations in $\mathbbR^N$ involving subcritical exponents, Nonlinear Analysis: T. M. A., 32 (1998), 41-51.doi: 10.1016/S0362-546X(97)00451-3.

    [18]

    T. S. Hsu and H. L. Lin, Multiple positive solutions for semilinear elliptic equations in $\mathbbR^N$ involving concave-convex nonlineatlties and sign-changing weight functions, Abstract and Applied Analysis, 2010 ID658397 (2010), 21 pages.

    [19]

    P. L. Lions, The concentration-compactness principle in the calculus of variations. The local compact case Part I, Ann. Inst. H. Poincaré Anal. Non Lineairé, 1 (1984), 109-145.

    [20]

    F. F. Liao and C. L. Tang, Four positive solutions of a quasilinear elliptic equation in $\mathbbR^N$, Comm. Pure Appl. Anal., 12 (2013), 2577-2600.doi: 10.3934/cpaa.2013.12.2577.

    [21]

    Z. Liu and Z. Q. Wang, Schrödinger equations with concave and convex nonlinearities, Z. Angew. Math. Phys.,56 (2005), 609-629.doi: 10.1007/s00033-005-3115-6.

    [22]

    T. Ouyang and J. Shi, Exact multiplicity of positive solutions for a class of semilinear problem II, J. Diff. Eqns., 158 (1999), 94-151.doi: 10.1016/S0022-0396(99)80020-5.

    [23]

    Francisco Odair de Paiva, Nonnegative solutions of elliptic problems with sublinear indefinite nonlinearity, J. Func. Anal., 261 (2011), 2569-2586.doi: 10.1016/j.jfa.2011.07.002.

    [24]

    M. Struwe, Variational Methods, 2nd edition, Springer-Verlag, Berlin-Heidelberg, 1996.doi: 10.1007/978-3-662-03212-1.

    [25]

    M. Tang, Exact multiplicity for semilinear elliptic Dirichlet problems involving concave and convex nonlinearities, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 705-717.doi: 10.1017/S0308210500002614.

    [26]

    T. F. Wu, Multiplicity of positive solutions for semilinear elliptic equations in $\mathbbR^N$, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 647-670.doi: 10.1017/S0308210506001156.

    [27]

    T. F. Wu, Three positive solutions for Dirichlet problems involving critical Sobolev exponent and sign-changing weight, J. Differ. Equat., 249 (2010), 1459-1578.doi: 10.1016/j.jde.2010.07.021.

    [28]

    T. F. Wu, On semilinear elliptic equations involving concave-convex nonlinearities and sign-changing weight function, J. Math. Anal. Appl., 318 (2006), 253-270.doi: 10.1016/j.jmaa.2005.05.057.

    [29]

    T. F. Wu, Multiple positive solutions for a class of concave-convex elliptic problem in $\mathbbR^N$ involving sign-changing weight, J. Funct. Anal., 258 (2010), 99-131.doi: 10.1016/j.jfa.2009.08.005.

    [30]

    H. Yin, Z. Yang and Z. Feng, Multiple positive solutions for a quasilinear elliptic equation in $\mathbbR^N$, Diff. Integ. Eqns, 25 (2012), 977-992.

    [31]

    L. Zhao, H. Liu and F. Zhao, Existence and concentration of solutions for the Schrödinger-Poisson equations with steep well potential, J. Diff. Eqns., 255 (2013), 1-23.doi: 10.1016/j.jde.2013.03.005.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(210) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return