Citation: |
[1] |
T. Clarke, G. R. Goldstein, J. A. Goldstein and S. Romanelli, The Wentzell telegraph equation: asymptotics and continuous dependence on the boundary conditions, Comm. Appl. Anal., 15 (2011), 313-324. |
[2] |
R. P. Clendenen, G. R. Goldstein and J. A. Goldstein, Degenerate flux for dynamic boundary conditions in parabolic and hyperbolic equations, Discrete Continuous Dynam. Systems, Series S, 9 (2016), 651-660. |
[3] |
G. M. Coclite, A. Favini, C. G. Gal, G. R. Goldstein, J. A. Goldstein, E. Obrecht and S. Romanelli, The role of Wentzell boundary conditions in linear and nonlinear analysis, in Advances in Nonlinear Analysis: Theory, Methods and Applications (ed. S. Sivasundaran), Cambridge Scientific Publishers Ltd., 2009, 279-292. |
[4] |
G. M. Coclite, A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, Continuous dependence on the boundary parameters for the Wentzell Laplacian, Semigroup Forum, 77 (2008), 101-108. |
[5] |
G. M. Coclite, A. Favini, G. R. Goldstein, J. A. Goldstein, and S. Romanelli, Continuous dependence in hyperbolic problems with Wentzell boundary conditions, Comm. Pure Appl. Anal., 13 (2014), 419-433. |
[6] |
K.-J. Engel and G. Fragnelli, Analyticity of semigroups generated by operators with generalized Wentzell boundary conditions, Adv. Differential Equations, 10 (2005), 1301-1320. |
[7] |
H. O. Fattorini, The Cauchy Problem, Addison-Wesley, Reading, 1983. |
[8] |
A. Favini, G. R. Goldstein, J. A. Goldstein, E. Obrecht and S. Romanelli, Elliptic operators with general Wentzell boundary conditions, analytic semigroups and the angle concavity theorem, Math. Nachr., 283 (2010), 504-521. |
[9] |
A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, $C_0$-semigroups generated by second order differential operators with general Wentzell boundary conditions, Proc. Amer. Math. Soc., 128 (2000), 1981-1989. |
[10] |
A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, The heat equation with generalized Wentzell boundary condition, J. Evol. Equ., 2 (2002), 1-19. |
[11] |
A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, Wentzell boundary conditions in the nonsymmetric case, Math. Model. Nat. Phenom., 3 (2008), 143-147. |
[12] |
G. R. Goldstein, Derivation and physical interpretation of general boundary conditions, Adv. Diff. Eqns., 11 (2006), 457-480. |
[13] |
G. R. Goldstein, J. A. Goldstein and M. Pierre, The Agmon-Douglis-Nirenberg problem in the context of dynamic boundary conditions, in preparation. |
[14] |
J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford University Press, Oxford, 1985. |
[15] |
P. D. Lax, Functional Analysis, Wiley- Interscience, New York, 2002. |
[16] |
D. Mugnolo and S. Romanelli, Dirichlet forms for general Wentzell boundary conditions, analytic semigroups, and cosine operator functions, Electr. J. Diff. Eq., 118 (2006), 1-20. |
[17] |
H. Triebel, Theory of Function Spaces, Birkhäuser Verlag, Basel, 1983. |
[18] |
H. Vogt and J. Voigt, Wentzell boundary conditions in the context of Dirichlet forms, Adv. Differential Equations, 8 (2003), 821-842. |