• Previous Article
    Asymptotic behavior and uniqueness of traveling wave fronts in a delayed nonlocal dispersal competitive system
  • CPAA Home
  • This Issue
  • Next Article
    Existence and symmetry result for fractional p-Laplacian in $\mathbb{R}^{n}$
January  2017, 16(1): 115-130. doi: 10.3934/cpaa.2017005

A complete classification of ground-states for a coupled nonlinear Schrödinger system

1. 

School of Mathematics and Statistics & Hubei Key Laboratory of Mathematical Sciences, Central China Normal University, Wuhan, 430079, P.R. China

2. 

Center for Applied Mathematics, Tianjin University, Tianjin 300072, P.R.China

3. 

Department of Mathematics and Statistics, Utah State University, Logan UT 84322, USA

E-mail address: zhi-qiang.wang@usu.edu

Received  June 2016 Revised  August 2016 Published  November 2016

In this paper, we establish the existence of nontrivial ground-state solutions for a coupled nonlinear Schrödinger system
$-\Delta u_j+ u_j=\sum\limits_{i=1}^mb_{ij}u_i^2u_j, \quad\text{in}\ \mathbb{R}^n,\\ u_j(x)\to 0\ \text{as}\ |x|\ \to \infty, \quad j=1,2,\cdots, m,$
where $n=1, 2, 3, m\geq 2$ and $b_{ij}$ are positive constants satisfying $b_{ij}=b_{ji}.$ By nontrivial we mean a solution that has all components non-zero. Due to possible systems collapsing it is important to classify ground state solutions. For $m=3$, we get a complete picture that describes whether nontrivial ground-state solutions exist or not for all possible cases according to some algebraic conditions of the matrix $B = (b_{ij})$. In particular, there is a nontrivial ground-state solution provided that all coupling constants $b_{ij}, i\neq j$ are sufficiently large as opposed to cases in which any ground-state solution has at least a zero component when $b_{ij}, i\neq j$ are all sufficiently small. Moreover, we prove that any ground-state solution is synchronized when matrix $B=(b_{ij})$ is positive semi-definite.
Citation: Chuangye Liu, Zhi-Qiang Wang. A complete classification of ground-states for a coupled nonlinear Schrödinger system. Communications on Pure and Applied Analysis, 2017, 16 (1) : 115-130. doi: 10.3934/cpaa.2017005
References:
[1]

J. Albert and S. Bhattarai, Existence and stability of a two-parameter family of solitary waves for an NLS-KdV system, Advances in Differential Equations, 18 (2013), 1129-1164.

[2]

A. Ambrosetti, E. Colorado, Standing waves of some coupled nonlinear Schrödinger equations, J. Lond. Math. Soc., 75 (2007), 67-82. doi: 10.1112/jlms/jdl020.

[3]

T. Bartsch and Z.-Q. Wang, Note on ground states of nonlinear Schrödinger systems, J.Partial Differential Equations, 19 (2006), 200-207.

[4]

D. J. Benney and A. C. Newell, The propagation of nonlinear wave envelopes, J. Math. Phys., 46 (1967), 133-139.

[5]

A. Hasegawa and F. Tappert, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers Ⅰ. Anormalous dispersion, Appl. Phys. Lett., 23 (1973), 142-144.

[6]

A. Hasegawa and F. Tappert, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers Ⅱ. Normal dispersion, Appl. Phys. Lett., 23 (1973), 171-172.

[7]

T. C. Lin and J. Wei, Ground state of N coupled nonlinear Schrödinger equations in $\mathbb{R}^N$, n ≤ 3, Communications in Mathematical Physics, 255 (2005), 629-653. doi: 10.1007/s00220-005-1313-x.

[8]

T. C. Lin and J. Wei, Ground State of N coupled nonlinear Schrödinger equations in $\mathbb{R}^N$, n ≤ 3, Communications in Mathematical Physics, 277 (2008), 573-576. doi: 10.1007/s00220-007-0365-5.

[9]

H. Liu, Z. Liu and J. Chang, Existence and uniquiness of positive solutions of nonlinear Schrödinger systems, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 145 (2015), 365-390. doi: 10.1017/S0308210513000711.

[10]

Z. Liu, Z.-Q. Wang, Ground states and bound states of a nonlinear Schrödinger system, Adv. Nonlinear Stud., 10 (2010), 175-193.

[11]

M. Mitchell and M. Segev, Self-trapping of inconherent white light, Nature, 387 (1997), 880-882.

[12]

N. V. Nguyen and Z.-Q. Wang, Orbital stability of solitary waves for a nonlinear Schrödinger system, Adv. Diff. Eqns., 16 (2011), 977-1000.

[13]

G. J. Roskes, Some nonlinear multiphase interactions, Stud. Appl. Math., 55 (1976), 231-238.

[14]

CH. Rüegg, N.Cavadini, A. Furrer, et al, Bose-Einstein condensation of the triple states in the magnetic insulator TlCuCl3, Nature, 423 (2003), 62-65.

[15]

J. Wei and W. Yao, Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations, Commun. Pure Appl. Anal., 11 (2012), 1003-1011.

[16]

Z.-Q. Wang and M. Willem, Partial symmetry of vector solutions for elliptic systems, Journal d'Analyse Mathematique, 122 (2014), 69-85. doi: 10.1007/s11854-014-0003-z.

[17]

J. Yang, Multiple permanent-wave trains in nonlinear systems, Stud. Appl. Math., 100 (1998), 127-152. doi: 10.1111/1467-9590.00073.

[18]

V. E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid, Sov. Phys. J. Appl. Mech. Tech. Phys., 4 (1968), 190-194.

[19]

V. E. Zakharov, Collapse of Langmuir waves, Sov. Phys. Jetp., 35 (1972), 908-914.

show all references

References:
[1]

J. Albert and S. Bhattarai, Existence and stability of a two-parameter family of solitary waves for an NLS-KdV system, Advances in Differential Equations, 18 (2013), 1129-1164.

[2]

A. Ambrosetti, E. Colorado, Standing waves of some coupled nonlinear Schrödinger equations, J. Lond. Math. Soc., 75 (2007), 67-82. doi: 10.1112/jlms/jdl020.

[3]

T. Bartsch and Z.-Q. Wang, Note on ground states of nonlinear Schrödinger systems, J.Partial Differential Equations, 19 (2006), 200-207.

[4]

D. J. Benney and A. C. Newell, The propagation of nonlinear wave envelopes, J. Math. Phys., 46 (1967), 133-139.

[5]

A. Hasegawa and F. Tappert, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers Ⅰ. Anormalous dispersion, Appl. Phys. Lett., 23 (1973), 142-144.

[6]

A. Hasegawa and F. Tappert, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers Ⅱ. Normal dispersion, Appl. Phys. Lett., 23 (1973), 171-172.

[7]

T. C. Lin and J. Wei, Ground state of N coupled nonlinear Schrödinger equations in $\mathbb{R}^N$, n ≤ 3, Communications in Mathematical Physics, 255 (2005), 629-653. doi: 10.1007/s00220-005-1313-x.

[8]

T. C. Lin and J. Wei, Ground State of N coupled nonlinear Schrödinger equations in $\mathbb{R}^N$, n ≤ 3, Communications in Mathematical Physics, 277 (2008), 573-576. doi: 10.1007/s00220-007-0365-5.

[9]

H. Liu, Z. Liu and J. Chang, Existence and uniquiness of positive solutions of nonlinear Schrödinger systems, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 145 (2015), 365-390. doi: 10.1017/S0308210513000711.

[10]

Z. Liu, Z.-Q. Wang, Ground states and bound states of a nonlinear Schrödinger system, Adv. Nonlinear Stud., 10 (2010), 175-193.

[11]

M. Mitchell and M. Segev, Self-trapping of inconherent white light, Nature, 387 (1997), 880-882.

[12]

N. V. Nguyen and Z.-Q. Wang, Orbital stability of solitary waves for a nonlinear Schrödinger system, Adv. Diff. Eqns., 16 (2011), 977-1000.

[13]

G. J. Roskes, Some nonlinear multiphase interactions, Stud. Appl. Math., 55 (1976), 231-238.

[14]

CH. Rüegg, N.Cavadini, A. Furrer, et al, Bose-Einstein condensation of the triple states in the magnetic insulator TlCuCl3, Nature, 423 (2003), 62-65.

[15]

J. Wei and W. Yao, Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations, Commun. Pure Appl. Anal., 11 (2012), 1003-1011.

[16]

Z.-Q. Wang and M. Willem, Partial symmetry of vector solutions for elliptic systems, Journal d'Analyse Mathematique, 122 (2014), 69-85. doi: 10.1007/s11854-014-0003-z.

[17]

J. Yang, Multiple permanent-wave trains in nonlinear systems, Stud. Appl. Math., 100 (1998), 127-152. doi: 10.1111/1467-9590.00073.

[18]

V. E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid, Sov. Phys. J. Appl. Mech. Tech. Phys., 4 (1968), 190-194.

[19]

V. E. Zakharov, Collapse of Langmuir waves, Sov. Phys. Jetp., 35 (1972), 908-914.

Table 1.  The number of non-zero components of ground-state solutions
case condition 1 condition 2 type
1 $det(B) > 0$ $\beta_1 > \sqrt{\mu_2\mu_3}, \beta_2 > \sqrt{\mu_1\mu_3}, \beta_3 > \sqrt{\mu_1\mu_2}$ $ p= 3 $
2 $det(B) > 0$ $\beta_1 < \sqrt{\mu_2\mu_3}, \beta_2 < \sqrt{\mu_1\mu_3}, \beta_3 < \sqrt{\mu_1\mu_2}$ $p=1$
3 $det(B) < 0$ $p=1, 2$
4 $rank(B)=1$ $p=1, 2, 3$
5 $rank(B)=2$ $\beta_1 > \sqrt{\mu_2\mu_3}, \beta_2 > \sqrt{\mu_1\mu_3}, \beta_3=\sqrt{\mu_1\mu_2}$ $p=2, 3$
6 $rank(B)=2$ $\beta_1 < \sqrt{\mu_2\mu_3}, \beta_2 < \sqrt{\mu_1\mu_3}, \beta_3=\sqrt{\mu_1\mu_2}$ $p=1, 2$
7 $rank(B)=2$ $\beta_1 > \sqrt{\mu_2\mu_3}, \beta_2 > \sqrt{\mu_1\mu_3}, \beta_3 > \sqrt{\mu_1\mu_2}$ $p=1, 2, 3$
8 $rank(B)=2$ $\beta_1 < \sqrt{\mu_2\mu_3}, \beta_2 < \sqrt{\mu_1\mu_3}, \beta_3 < \sqrt{\mu_1\mu_2}$ $p=1$
case condition 1 condition 2 type
1 $det(B) > 0$ $\beta_1 > \sqrt{\mu_2\mu_3}, \beta_2 > \sqrt{\mu_1\mu_3}, \beta_3 > \sqrt{\mu_1\mu_2}$ $ p= 3 $
2 $det(B) > 0$ $\beta_1 < \sqrt{\mu_2\mu_3}, \beta_2 < \sqrt{\mu_1\mu_3}, \beta_3 < \sqrt{\mu_1\mu_2}$ $p=1$
3 $det(B) < 0$ $p=1, 2$
4 $rank(B)=1$ $p=1, 2, 3$
5 $rank(B)=2$ $\beta_1 > \sqrt{\mu_2\mu_3}, \beta_2 > \sqrt{\mu_1\mu_3}, \beta_3=\sqrt{\mu_1\mu_2}$ $p=2, 3$
6 $rank(B)=2$ $\beta_1 < \sqrt{\mu_2\mu_3}, \beta_2 < \sqrt{\mu_1\mu_3}, \beta_3=\sqrt{\mu_1\mu_2}$ $p=1, 2$
7 $rank(B)=2$ $\beta_1 > \sqrt{\mu_2\mu_3}, \beta_2 > \sqrt{\mu_1\mu_3}, \beta_3 > \sqrt{\mu_1\mu_2}$ $p=1, 2, 3$
8 $rank(B)=2$ $\beta_1 < \sqrt{\mu_2\mu_3}, \beta_2 < \sqrt{\mu_1\mu_3}, \beta_3 < \sqrt{\mu_1\mu_2}$ $p=1$
[1]

Mohammad Ali Husaini, Chuangye Liu. Synchronized and ground-state solutions to a coupled Schrödinger system. Communications on Pure and Applied Analysis, 2022, 21 (2) : 639-667. doi: 10.3934/cpaa.2021192

[2]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[3]

Zhanping Liang, Yuanmin Song, Fuyi Li. Positive ground state solutions of a quadratically coupled schrödinger system. Communications on Pure and Applied Analysis, 2017, 16 (3) : 999-1012. doi: 10.3934/cpaa.2017048

[4]

Yongpeng Chen, Yuxia Guo, Zhongwei Tang. Concentration of ground state solutions for quasilinear Schrödinger systems with critical exponents. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2693-2715. doi: 10.3934/cpaa.2019120

[5]

Eugenio Montefusco, Benedetta Pellacci, Marco Squassina. Energy convexity estimates for non-degenerate ground states of nonlinear 1D Schrödinger systems. Communications on Pure and Applied Analysis, 2010, 9 (4) : 867-884. doi: 10.3934/cpaa.2010.9.867

[6]

Dongdong Qin, Xianhua Tang, Qingfang Wu. Ground states of nonlinear Schrödinger systems with periodic or non-periodic potentials. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1261-1280. doi: 10.3934/cpaa.2019061

[7]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[8]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete and Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[9]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure and Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[10]

Zupei Shen, Zhiqing Han, Qinqin Zhang. Ground states of nonlinear Schrödinger equations with fractional Laplacians. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 2115-2125. doi: 10.3934/dcdss.2019136

[11]

Patricio Felmer, César Torres. Radial symmetry of ground states for a regional fractional Nonlinear Schrödinger Equation. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2395-2406. doi: 10.3934/cpaa.2014.13.2395

[12]

Chang-Lin Xiang. Remarks on nondegeneracy of ground states for quasilinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5789-5800. doi: 10.3934/dcds.2016054

[13]

Alex H. Ardila. Stability of ground states for logarithmic Schrödinger equation with a $δ^{\prime}$-interaction. Evolution Equations and Control Theory, 2017, 6 (2) : 155-175. doi: 10.3934/eect.2017009

[14]

Rong Cheng, Jun Wang. Existence of ground states for Schrödinger-Poisson system with nonperiodic potentials. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2021317

[15]

Hongyu Ye. Positive solutions for critically coupled Schrödinger systems with attractive interactions. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 485-507. doi: 10.3934/dcds.2018022

[16]

Jiabao Su, Rushun Tian, Zhi-Qiang Wang. Positive solutions of doubly coupled multicomponent nonlinear Schrödinger systems. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 2143-2161. doi: 10.3934/dcdss.2019138

[17]

Lushun Wang, Minbo Yang, Yu Zheng. Infinitely many segregated solutions for coupled nonlinear Schrödinger systems. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 6069-6102. doi: 10.3934/dcds.2019265

[18]

Zhongwei Tang. Segregated peak solutions of coupled Schrödinger systems with Neumann boundary conditions. Discrete and Continuous Dynamical Systems, 2014, 34 (12) : 5299-5323. doi: 10.3934/dcds.2014.34.5299

[19]

Zhitao Zhang, Haijun Luo. Symmetry and asymptotic behavior of ground state solutions for schrödinger systems with linear interaction. Communications on Pure and Applied Analysis, 2018, 17 (3) : 787-806. doi: 10.3934/cpaa.2018040

[20]

Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-Maxwell-Kirchhoff systems with pure critical growth nonlinearity. Communications on Pure and Applied Analysis, 2021, 20 (2) : 817-834. doi: 10.3934/cpaa.2020292

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (223)
  • HTML views (149)
  • Cited by (1)

Other articles
by authors

[Back to Top]