\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Trudinger-Moser type inequality and existence of solution for perturbed non-local elliptic operators with exponential nonlinearity

  • Author Bio: E-mail address: bahrounianouar@yahoo.fr
Abstract Full Text(HTML) Related Papers Cited by
  • In this paper we consider the following perturbed nonlocal problem with exponential nonlinearity

    $\begin{cases}-\mathcal{L}_{K}u+ \left|u\right|^{p-2}u+h(u)= f \ \ \ \ \ \mbox{in} \ \ \Omega,\\u=0, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mbox{in}\ \ \mathbb{R}^{N}\setminus \Omega,\end{cases}$

    where $s\in (0, 1)$, $N=ps$, $p\geq 2$ and $f\in L.{\infty}(\mathbb{R}^{N})$. First, we generalize a suitable Trudinger-Moser inequality to a fractional functional space. Then, using the Ekeland's variational principle, we prove the existence of a solution of problem (1).

    Mathematics Subject Classification: Primary: 35J60; 35J91; Secondary: 58E30.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1]

    S. Adachi and K. Tanaka, Trudinger type inequalities in ${\mathbb{R}.n}$ and their best constants, Proc. Amer. Math. Soc, 128 (2000), 2051-2057.doi: 10.1090/S0002-9939-99-05180-1.

    [2]

    G. Autuori and P. Pucci, Elliptic problems involving the fractional Laplacian in ${\mathbb{R}.n}$, J. Differential Equations, 255 (2012), 2340-2362.doi: 10.1016/j.jde.2013.06.016.

    [3]

    Giovanni M. Bisci and V. Radulescu, Ground state solutions of scalar field fractional Schrödinger equations, Calc. Var., 54 (2015), 2985-3008.doi: 10.1007/s00526-015-0891-5.

    [4] G. Molica Bisci, V. Radulescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems, Combridge University press, Cambridge, 2015. doi: 10.1017/CBO9781316282397.
    [5]

    Haim Brezis and Frank Merle, Uniform estimates and blow-up behavior for solutions of -∆u = V(x)eu in two dimensions, Comm. Partial Differential Equations, 16 (1991), 1223-1253.doi: 10.1080/03605309108820797.

    [6]

    L. Cafarelli, S. Salsa and L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplatian, Invent. Math, 171 (2008), 425-461.doi: 10.1007/s00222-007-0086-6.

    [7]

    L. Caffarelli, J-M Roque joffre and Y. Sire, Variational problems for free boundaries for the fractional Laplacian, J. Eur. Math. Soc, 12 (2010), 1151-1179.doi: 10.4171/JEMS/226.

    [8]

    X. Cheng, Ground state solutions of asymptotically linear fractional Schrödinger equations with unbounded potential, J. Math. Phys, 54 (2013), 061504.doi: 10.1063/1.4809933.

    [9]

    I. Ekeland, On the variational principle principle, J. Math. Anal. Appl, 47 (2014), 324-353.

    [10]

    P. Felmer, A. Quaas and J. Tan, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Pro. Roy. Soc. Edinburgh Sect A, 142 (2012), 1237-1262.

    [11]

    D. G. de Figueiredo, J. M. do Ò, B. Ruf, On an inequality by N. Trudinger and J. Moser and related elliptic equations, Commun. Pure Appl. Math, 55 (2002), 135-152.doi: 10.1002/cpa.10015.

    [12]

    D. G. de Figueiredo, O. H. Miyagaki and B. Ruf, Elliptic equations in R2 with nonlinearities in he critical growth range, Calc. Var. Partial Differ. Equ, 3 (1995), 139-153.doi: 10.1007/BF01205003.

    [13] A. Fiscella, R. Servadei and E. Valdinoci, Density properties for fractional Sobolev spaces, preprint. doi: 10.5186/aasfm.2015.4009.
    [14]

    G. Franzina and G. Palatucci, Fractional p-eigenvalues, Riv. Mat. Univ. Parma, 5 (2014), 373-386.

    [15]

    A. Iannizzotto and M. Squassina, $\frac{1}{2}$ -Laplacian problems with exponential nonlinearity, J. Math. Anal. Appl, 414 (2014), 372-385.doi: 10.1016/j.jmaa.2013.12.059.

    [16]

    Yan Yan Li and Itai Shafrir, Blow-up analysis for solutions of -∆u = Veu in dimension two, Indiana Univ. Math. J, 43 (1994), 1255-1270.doi: 10.1512/iumj.1994.43.43054.

    [17]

    E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math, 136 (2012), 521-573.doi: 10.1016/j.bulsci.2011.12.004.

    [18]

    T. Ozawa, On critical cases of Sobolev's inequalities, J. Funct. Analysis, 127 (1995), 259-269.doi: 10.1006/jfan.1995.1012.

    [19]

    R. Servadei and E. Valdinoci, Mountain Pass solutions for non-local elliptic operators, J. Math. Anal. Appl, 389 (2012), 887-898.doi: 10.1016/j.jmaa.2011.12.032.

    [20]

    R. Servadei and E. Valdinoci, Lewy-Stampacchia type estimates for variational inequalities driven by (non)local operators, Rev. Mat. Iberoam, 29 (2013), 1091-1126.doi: 10.4171/RMI/750.

    [21]

    R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst, 33 (2013), 2105-2137.

    [22]

    Y. Sire and E. Valdinoci, Rigidity results for some boundary quasilinear phase transitions, Comm. Partial. Differ. Eq, 33 (2009), 765-784.doi: 10.1080/03605300902892402.

    [23]

    N. S. Trudinger, On imbeddings into Orcliz spaces and some applications, J. Math. Mech, 17 (1967), 473-483.

    [24]

    J. L. Vázquez, Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators, Discrete Contin. Dyn. Syst, 7 (2014), 857-885.doi: 10.3934/dcdss.2014.7.857.

  • 加载中
SHARE

Article Metrics

HTML views(525) PDF downloads(295) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return