The aim of this paper is to discuss the issue of global existence of weak solutions of the so called ghost effect system which has been derived recently in [C. D. LEVERMORE, W. SUN, K. TRIVISA, SIAM J. Math. Anal. 2012]. We extend the local existence of solutions proved in [C.D. LEVERMORE, W. SUN, K. TRIVISA, Indiana Univ. J., 2011] to a global existence result. The key tool in this paper is a new functional inequality inspired of what proposed in [A. JÜNGEL, D. MATTHES, SIAM J. Math. Anal., 2008]. Such an inequality being adapted in [D. BRESCH, A. VASSEUR, C. YU, 2016] to be useful for compressible Navier-Stokes equations with degenerate viscosities. Our strategy to prove the global existence of solution builds upon the framework developed in [D. BRESCH, V. GIOVANGILI, E. ZATORSKA, J. Math. Pures Appl., 2015] for low Mach number system.
Citation: |
[1] |
P. Antonelli and S. Spirito, A global existence result for a zero mach number system, arXiv: 1605.03510, 2016.
![]() |
[2] |
D. Bresch, F. Couderc, P. Noble and J. -P. Vila, New extended formulations of euler-korteweg equations based on a generalization of the quantum bohm identity, arXiv: 1503.08678, 2015.
![]() |
[3] |
D. Bresch, B. Desjardins and E. Zatorska, Two-velocity hydrodynamics in fluid mechanics: Part ii existence of global κ-entropy solutions to the compressible navier-stokes systems with degenerate viscosities, J. Math. Pures Appl., 4 (2015), 801-836.doi: 10.1016/j.matpur.2015.05.004. |
[4] |
D. Bresch, E. H. Essoufi and M. Sy, Effect of density dependent viscosities on multiphasic incompressible fluid models, Journal of Math. Fluid Mech., 3 (2007), 377-397.doi: 10.1007/s00021-005-0204-4. |
[5] |
D. Bresch, V. Giovangigli and E. Zatorska, Two-velocity hydrodynamics in fluid mechanics: Part i well posedness for zero mach number systems, Journal de Math. Pures. Appl., 4 (2015), 762-800.doi: 10.1016/j.matpur.2015.05.003. |
[6] |
D. Bresch, A. Vasseur and C. Yu, Global existence of compressible Navier-Stokes equation with degenerates viscosities, In preparation, (2016).
![]() |
[7] |
R. Danchin and X. Liao, On the well-posedness of the full low Mach number limit system in general critical Besov spaces, Commun. Contemp. Math., 3 (2012), 125-0022.doi: 10.1142/S0219199712500228. |
[8] |
J. Dong, A note on barotropic compressible quantum Navier-Stokes equations, Nonlinear Anal., 4 (2010), 854-856.doi: 10.1016/j.na.2010.03.047. |
[9] |
M. Gisclon and I. Lacroix-Violet, About the barotropic compressible quantum Navier-Stokes equations, Nonlinear Anal. , (2015), 106-121.
doi: 10.1016/j.na.2015.07.006.![]() ![]() ![]() |
[10] |
F. Jiang, A remark on weak solutions to the barotropic compressible quantum Navier-Stokes equations, Nonlinear Anal. Real World Appl., 3 (2011), 1733-1735.doi: 10.1016/j.nonrwa.2010.11.005. |
[11] |
A. Jüngel, Global weak solutions to compressible navier-stokes equations for quantum fluids, SIAM J. Math. Anal., 3 (2010), 1025-1045.doi: 10.1137/090776068. |
[12] |
A. Jüngel and D. Matthes, The derrida-lebowitz-speer-spohn equation: existence, nonuniqueness, and decay rates of the solutions, SIAM J. Math. Anal., 6 (2008), 1996-2015.doi: 10.1137/060676878. |
[13] |
C. D. Levermore, W. Sun and K. Trivisa, A low mach number limit of a dispersive navierstokes system, SIAM J. Math. Anal., 3 (2012), 1760-1807.doi: 10.1137/100818765. |
[14] |
C. D. Levermore, W. R. Sun and K. Trivisa, Local well-posedness of a ghost effect system, Indiana Univ. Math. J., 2 (2009), 517-576. |
[15] |
X. Liao, A global existence result for a zero Mach number system, J. Math. Fluid Mech., 1 (2014), 77-103.doi: 10.1007/s00021-013-0152-3. |
[16] |
P. -L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible Models, Oxford Lecture Series in Mathematics and its Applications, The Clarendon Press, Oxford University Press, New York, 1996.
![]() ![]() |
[17] |
P. -L Lions, Mathematical Topics in Fluid Mechanics. Vol. 2 Compressible Models, Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press, Oxford University Press, New York, 1998.
![]() ![]() |
[18] |
J. -C. Maxwell, On stresses in rarified gases arising from inequalities of temperature, Philos Trans R Soc Lond B Biol Sci, (1879), 231-256.
![]() |
[19] |
J. Simon, On the existence of the pressure for solutions of the variational Navier-Stokes equations, J. Math. Fluid Mech., 3 (1999), 225-234.doi: 10.1007/s000210050010. |
[20] |
Y. Sone, Flows induced by temperature fields in a rarefied gas and their ghost effect on the behavior of a gas in the continuum limit, Annu. Rev. Fluid Mech., 32 (2000), 779-811.doi: 10.1146/annurev.fluid.32.1.779. |
[21] |
Y. Sone, Kinetic Theory and Fluid Dynamics, Birkhäuser Boston, Inc. , Boston, MA, 2002.
doi: 10.1007/978-1-4612-0061-1.![]() ![]() ![]() |
[22] |
C. Villani, A review of mathematical topics in collisional kinetic theory, Handbook of mathematical fluid dynamics, Vol. Ⅰ (2002), 71-305.
doi: 10.1016/S1874-5792(02)80004-0.![]() ![]() ![]() |