January  2017, 16(1): 369-372. doi: 10.3934/cpaa.2017018

Erratum: "On the nonlocal Cahn-Hilliard-Brinkman and Cahn-Hilliard-Hele-Shaw systems" [Comm. Pure Appl. Anal. 15 (2016), 299--317]

1. 

Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK

2. 

Dipartimento di Matematica, Politecnico di Milano, Milano 20133, Italy

Received  August 2016 Revised  October 2016 Published  November 2016

Fund Project: The work of the first author was supported by the Engineering and Physical Sciences Research Council [EP/L015811/1]. The second author is member of the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) and of the Istituto Nazionale di Alta Matematica (INdAM).

Citation: FRANCESCO DELLA PORTA, Maurizio Grasselli. Erratum: "On the nonlocal Cahn-Hilliard-Brinkman and Cahn-Hilliard-Hele-Shaw systems" [Comm. Pure Appl. Anal. 15 (2016), 299--317]. Communications on Pure & Applied Analysis, 2017, 16 (1) : 369-372. doi: 10.3934/cpaa.2017018
References:
[1]

S. Bosia, M. Conti and M. Grasselli, On the Cahn-Hilliard-Brinkman System, Commun. Math. Sci., 13 (2015), 1541-1567.  Google Scholar

[2]

F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, Appl. Math. Sci. 183. Springer, New York, 2013. Google Scholar

[3]

F. Della Porta and M. Grasselli, On the nonlocal Cahn-Hilliard-Brinkman and Cahn-HilliardHele-Shaw systems, Comm. Pure Appl. Anal., 15 (2016), 299-317. Google Scholar

[4]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573. Google Scholar

[5]

J. P. Kelliher, R. Temam and X. Wang, Boundary layer associated with the Darcy-BrinkmanBoussinesq model for convection in porous media, Phys. D, 240 (2011), 619-628. Google Scholar

show all references

References:
[1]

S. Bosia, M. Conti and M. Grasselli, On the Cahn-Hilliard-Brinkman System, Commun. Math. Sci., 13 (2015), 1541-1567.  Google Scholar

[2]

F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, Appl. Math. Sci. 183. Springer, New York, 2013. Google Scholar

[3]

F. Della Porta and M. Grasselli, On the nonlocal Cahn-Hilliard-Brinkman and Cahn-HilliardHele-Shaw systems, Comm. Pure Appl. Anal., 15 (2016), 299-317. Google Scholar

[4]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573. Google Scholar

[5]

J. P. Kelliher, R. Temam and X. Wang, Boundary layer associated with the Darcy-BrinkmanBoussinesq model for convection in porous media, Phys. D, 240 (2011), 619-628. Google Scholar

[1]

Francesco Della Porta, Maurizio Grasselli. On the nonlocal Cahn-Hilliard-Brinkman and Cahn-Hilliard-Hele-Shaw systems. Communications on Pure & Applied Analysis, 2016, 15 (2) : 299-317. doi: 10.3934/cpaa.2016.15.299

[2]

Yonggeun Cho, Gyeongha Hwang, Tohru Ozawa. Corrigendum to "On small data scattering of Hartree equations with short-range interaction" [Comm. Pure. Appl. Anal., 15 (2016), 1809-1823]. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1939-1940. doi: 10.3934/cpaa.2017094

[3]

Wenbin Chen, Wenqiang Feng, Yuan Liu, Cheng Wang, Steven M. Wise. A second order energy stable scheme for the Cahn-Hilliard-Hele-Shaw equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 149-182. doi: 10.3934/dcdsb.2018090

[4]

Matthias Ebenbeck, Harald Garcke, Robert Nürnberg. Cahn–Hilliard–Brinkman systems for tumour growth. Discrete & Continuous Dynamical Systems - S, 2021, 14 (11) : 3989-4033. doi: 10.3934/dcdss.2021034

[5]

Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (12) : 6387-6403. doi: 10.3934/dcdsb.2021024

[6]

Ciprian G. Gal, Maurizio Grasselli. Longtime behavior of nonlocal Cahn-Hilliard equations. Discrete & Continuous Dynamical Systems, 2014, 34 (1) : 145-179. doi: 10.3934/dcds.2014.34.145

[7]

Annalisa Iuorio, Stefano Melchionna. Long-time behavior of a nonlocal Cahn-Hilliard equation with reaction. Discrete & Continuous Dynamical Systems, 2018, 38 (8) : 3765-3788. doi: 10.3934/dcds.2018163

[8]

Francesco Della Porta, Maurizio Grasselli. Convective nonlocal Cahn-Hilliard equations with reaction terms. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1529-1553. doi: 10.3934/dcdsb.2015.20.1529

[9]

Tian Ma, Shouhong Wang. Cahn-Hilliard equations and phase transition dynamics for binary systems. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 741-784. doi: 10.3934/dcdsb.2009.11.741

[10]

Peter Howard, Bongsuk Kwon. Spectral analysis for transition front solutions in Cahn-Hilliard systems. Discrete & Continuous Dynamical Systems, 2012, 32 (1) : 125-166. doi: 10.3934/dcds.2012.32.125

[11]

Ahmad Makki, Alain Miranville. Existence of solutions for anisotropic Cahn-Hilliard and Allen-Cahn systems in higher space dimensions. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 759-775. doi: 10.3934/dcdss.2016027

[12]

T. Tachim Medjo. A Cahn-Hilliard-Navier-Stokes model with delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2663-2685. doi: 10.3934/dcdsb.2016067

[13]

Alain Miranville. Existence of solutions for Cahn-Hilliard type equations. Conference Publications, 2003, 2003 (Special) : 630-637. doi: 10.3934/proc.2003.2003.630

[14]

Sami Injrou, Morgan Pierre. Stable discretizations of the Cahn-Hilliard-Gurtin equations. Discrete & Continuous Dynamical Systems, 2008, 22 (4) : 1065-1080. doi: 10.3934/dcds.2008.22.1065

[15]

Desheng Li, Xuewei Ju. On dynamical behavior of viscous Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems, 2012, 32 (6) : 2207-2221. doi: 10.3934/dcds.2012.32.2207

[16]

Laurence Cherfils, Alain Miranville, Sergey Zelik. On a generalized Cahn-Hilliard equation with biological applications. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2013-2026. doi: 10.3934/dcdsb.2014.19.2013

[17]

Alain Miranville, Giulio Schimperna. On a doubly nonlinear Cahn-Hilliard-Gurtin system. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 675-697. doi: 10.3934/dcdsb.2010.14.675

[18]

Álvaro Hernández, Michał Kowalczyk. Rotationally symmetric solutions to the Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems, 2017, 37 (2) : 801-827. doi: 10.3934/dcds.2017033

[19]

Quan Wang, Dongming Yan. On the stability and transition of the Cahn-Hilliard/Allen-Cahn system. Discrete & Continuous Dynamical Systems - B, 2020, 25 (7) : 2607-2620. doi: 10.3934/dcdsb.2020024

[20]

Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (125)
  • HTML views (147)
  • Cited by (2)

Other articles
by authors

[Back to Top]