-
Previous Article
Center conditions for generalized polynomial kukles systems
- CPAA Home
- This Issue
-
Next Article
Singular periodic solutions for the p-laplacian ina punctured domain
Long-term stability for kdv solitons in weighted Hs spaces
1. | Department of Mathematics Wofford College, 429 North Church Street, Spartanburg, SC 29303 |
2. | Department of Mathematics and Statistics, Wake Forest University, P.O. Box 7388, Winston Salem, NC 27109 |
In this work, we consider the stability of solitons for the KdV equation below the energy space, using spatially-exponentially-weighted norms. Using a combination of the I-method and spectral analysis following Pego and Weinstein, we are able to show that, in the exponentially weighted space, the perturbation of a soliton decays exponentially for arbitrarily long times. The finite time restriction is due to a lack of global control of the unweighted perturbation.
References:
[1] |
T. Benjamin, The stability of solitary waves, Proc. Roy. Soc. (London) Ser. A, 328 (1972), 153-183.
doi: 10.1098/rspa.1972.0074. |
[2] |
J. Bona, On the stability theory of solitary waves, Proc. Roy. Soc. (London) Ser. A, 344 (1975), 363-374.
doi: 10.1098/rspa.1975.0106. |
[3] |
J. Bona, P. Souganidis and W. Strauss, Stability and instability of solitary waves of Korteweg-de Vries type, Proc. Roy. Soc. (London) Ser. A, 411 (1987), 395-412.
doi: 10.1098/rspa.1987.0073. |
[4] |
T. Buckmaster and H. Koch, The Korteweg-de Vries equation at H-1 regularity, arXiv: 1112.4657 Google Scholar |
[5] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Multilinear estimates for periodic KdV equations, and applications, J. Fund. Anal., 211 (2004), 173-218. |
[6] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Polynomial upper bounds for the instability of the nonlinear Schrodinger equation below the energy norm, Commun. Pure. Appl. Anal., 2 (2003), 33-50. |
[7] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Polynomial upper bounds for the orbital instability of the 1D cubic NLS below the energy norm, Discrete Contin. Dyn. Syst., 9 (2003), 31-54. |
[8] |
Z. Guo and B. Wang, Global well-posedness and inviscid limit for the Korteweg-de Vries-Burgers equation, J. Differential Equations, 246 (2009), 3864-3901. |
[9] |
N. Kishimoto, Well-posedness of the Cauchy problem for the Korteweg-de Vries equation at the critical regularity, Differential Integral Equations, 22 (2009), 447-464. |
[10] |
Y. Martel and F. Merle, Asymptotic stability of solitons for subcritical generalized KdV equations, Arch. Ration. Mech. Anal., 157 (2001), 219-254.
doi: 10.1007/s002050100138. |
[11] |
Y. Martel and F. Merle, Asymptotic stability of solitons of the subcritical gKdV equations, revisited, Nonlinearity, 18 (2005), 391-427.
doi: 10.1088/0951-7715/18/1/004. |
[12] |
Y. Martel and F. Merle, Asymptotic stability of solitons of the gKdV equations with general nonlinearity, Math. Ann., 341 (2008), 391-427.
doi: 10.1007/s00208-007-0194-z. |
[13] |
F. Merle and L. Vega, L2 stability of solitons for the KdV equation, Int. Math. Res. Not., 13 (2003), 735-753.
doi: 10.1155/S1073792803208060. |
[14] |
T. Mizumachi, Large time asymptotics of solutions around solitary waves to the generalized Korteweg-de Vries equations, SIAM J. Math. Anal., 32 (2001), 1050-1080. |
[15] |
T. Mizumachi and N. Tzvetkov, L2-stability of solitary waves for the KdV equation via Pego and Weinstein's method, preprint, arXiv: 1403.5321. Google Scholar |
[16] |
L. Molinet and F. Ribaud, The Cauchy problem for dissipative Korteweg de Vries equations in Sobolev spaces of negative order, Indiana Univ. Math. J., 50 (2001), 1745-1776. |
[17] |
L. Molinet and F. Ribaud, On the low regularity of the Korteweg-de Vries-Burgers equation, Int. Math. Res. Not., 37 (2002), 1979-2005. |
[18] |
R. Pego and M. Weinstein, Asymptotic stability of solitary waves, Comm. Math. Phys., 2 (1994), 305-349. |
[19] |
B. Pigott, Polynomial-in-time upper bounds for the orbital instability of subcritical generalized Korteweg-de Vries equations, Commun. Pure. Appl. Anal., 13 (2014), 389-418.
doi: 10.3934/cpaa.2014.13.389. |
[20] |
B. Pigott and S. Raynor, Asymptotic stability for KdV solitons in weighted spaces via iteration, Submitted, (2013). Google Scholar |
[21] |
S. Raynor and G. Staffilani, Low regularity stability of solitons for the KdV equation, Commun. Pure. Appl. Anal., 2 (2003), 277-296.
doi: 10.3934/cpaa.2003.2.277. |
[22] |
M. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math, 39 (1986), 51-67.
doi: 10.1002/cpa.3160390103. |
show all references
References:
[1] |
T. Benjamin, The stability of solitary waves, Proc. Roy. Soc. (London) Ser. A, 328 (1972), 153-183.
doi: 10.1098/rspa.1972.0074. |
[2] |
J. Bona, On the stability theory of solitary waves, Proc. Roy. Soc. (London) Ser. A, 344 (1975), 363-374.
doi: 10.1098/rspa.1975.0106. |
[3] |
J. Bona, P. Souganidis and W. Strauss, Stability and instability of solitary waves of Korteweg-de Vries type, Proc. Roy. Soc. (London) Ser. A, 411 (1987), 395-412.
doi: 10.1098/rspa.1987.0073. |
[4] |
T. Buckmaster and H. Koch, The Korteweg-de Vries equation at H-1 regularity, arXiv: 1112.4657 Google Scholar |
[5] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Multilinear estimates for periodic KdV equations, and applications, J. Fund. Anal., 211 (2004), 173-218. |
[6] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Polynomial upper bounds for the instability of the nonlinear Schrodinger equation below the energy norm, Commun. Pure. Appl. Anal., 2 (2003), 33-50. |
[7] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Polynomial upper bounds for the orbital instability of the 1D cubic NLS below the energy norm, Discrete Contin. Dyn. Syst., 9 (2003), 31-54. |
[8] |
Z. Guo and B. Wang, Global well-posedness and inviscid limit for the Korteweg-de Vries-Burgers equation, J. Differential Equations, 246 (2009), 3864-3901. |
[9] |
N. Kishimoto, Well-posedness of the Cauchy problem for the Korteweg-de Vries equation at the critical regularity, Differential Integral Equations, 22 (2009), 447-464. |
[10] |
Y. Martel and F. Merle, Asymptotic stability of solitons for subcritical generalized KdV equations, Arch. Ration. Mech. Anal., 157 (2001), 219-254.
doi: 10.1007/s002050100138. |
[11] |
Y. Martel and F. Merle, Asymptotic stability of solitons of the subcritical gKdV equations, revisited, Nonlinearity, 18 (2005), 391-427.
doi: 10.1088/0951-7715/18/1/004. |
[12] |
Y. Martel and F. Merle, Asymptotic stability of solitons of the gKdV equations with general nonlinearity, Math. Ann., 341 (2008), 391-427.
doi: 10.1007/s00208-007-0194-z. |
[13] |
F. Merle and L. Vega, L2 stability of solitons for the KdV equation, Int. Math. Res. Not., 13 (2003), 735-753.
doi: 10.1155/S1073792803208060. |
[14] |
T. Mizumachi, Large time asymptotics of solutions around solitary waves to the generalized Korteweg-de Vries equations, SIAM J. Math. Anal., 32 (2001), 1050-1080. |
[15] |
T. Mizumachi and N. Tzvetkov, L2-stability of solitary waves for the KdV equation via Pego and Weinstein's method, preprint, arXiv: 1403.5321. Google Scholar |
[16] |
L. Molinet and F. Ribaud, The Cauchy problem for dissipative Korteweg de Vries equations in Sobolev spaces of negative order, Indiana Univ. Math. J., 50 (2001), 1745-1776. |
[17] |
L. Molinet and F. Ribaud, On the low regularity of the Korteweg-de Vries-Burgers equation, Int. Math. Res. Not., 37 (2002), 1979-2005. |
[18] |
R. Pego and M. Weinstein, Asymptotic stability of solitary waves, Comm. Math. Phys., 2 (1994), 305-349. |
[19] |
B. Pigott, Polynomial-in-time upper bounds for the orbital instability of subcritical generalized Korteweg-de Vries equations, Commun. Pure. Appl. Anal., 13 (2014), 389-418.
doi: 10.3934/cpaa.2014.13.389. |
[20] |
B. Pigott and S. Raynor, Asymptotic stability for KdV solitons in weighted spaces via iteration, Submitted, (2013). Google Scholar |
[21] |
S. Raynor and G. Staffilani, Low regularity stability of solitons for the KdV equation, Commun. Pure. Appl. Anal., 2 (2003), 277-296.
doi: 10.3934/cpaa.2003.2.277. |
[22] |
M. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math, 39 (1986), 51-67.
doi: 10.1002/cpa.3160390103. |
[1] |
Andrew Comech, Elena Kopylova. Orbital stability and spectral properties of solitary waves of Klein–Gordon equation with concentrated nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021063 |
[2] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[3] |
Yinsong Bai, Lin He, Huijiang Zhao. Nonlinear stability of rarefaction waves for a hyperbolic system with Cattaneo's law. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021049 |
[4] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
[5] |
Xiongxiong Bao, Wan-Tong Li. Existence and stability of generalized transition waves for time-dependent reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3621-3641. doi: 10.3934/dcdsb.2020249 |
[6] |
Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021055 |
[7] |
Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021056 |
[8] |
Xu Pan, Liangchen Wang. Boundedness and asymptotic stability in a quasilinear two-species chemotaxis system with nonlinear signal production. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021064 |
[9] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
[10] |
Jihoon Lee, Nguyen Thanh Nguyen. Gromov-Hausdorff stability of reaction diffusion equations with Robin boundary conditions under perturbations of the domain and equation. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1263-1296. doi: 10.3934/cpaa.2021020 |
[11] |
Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035 |
[12] |
Chiun-Chuan Chen, Hung-Yu Chien, Chih-Chiang Huang. A variational approach to three-phase traveling waves for a gradient system. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021055 |
[13] |
Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3759-3779. doi: 10.3934/dcds.2021015 |
[14] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[15] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[16] |
Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021005 |
[17] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[18] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[19] |
Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021066 |
[20] |
Liangliang Ma. Stability of hydrostatic equilibrium to the 2D fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021068 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]