March  2017, 16(2): 417-426. doi: 10.3934/cpaa.2017021

Center conditions for generalized polynomial kukles systems

Departament de Matemàtica, Universitat de Lleida, Avda. Jaume Ⅱ, 69; 25001 Lleida, Catalonia, Spain

Received  January 2016 Revised  October 2016 Published  January 2017

Fund Project: The author is partially supported by a MINECO/FEDER grant number MTM2014-53703-P and by a AGAUR (Generalitat de Catalunya) grant number 2014SGR 1204.

Abstract. In this paper we study the center problem for certain generalized Kukles systems $\dot{x}= y, \qquad \dot{y}= P_0(x)+ P_1(x)y+P_2(x) y^2+ P_3(x) y^3, $\end{document} where Pi(x) are polynomials of degree n, P0(0) = 0 and P0′(0) < 0. Computing the focal values and using modular arithmetics and Gröbner bases we find the center conditions for such systems when P0 is of degree 2 and Pi for i = 1; 2; 3 are of degree 3 without constant terms. We also establish a conjecture about the center conditions for such systems.

Citation: Jaume Giné. Center conditions for generalized polynomial kukles systems. Communications on Pure & Applied Analysis, 2017, 16 (2) : 417-426. doi: 10.3934/cpaa.2017021
References:
[1]

L. A. Cherkas, On the conditions for a center for certain equations of the form yy′ = P(x) + Q(x)y + R(x)y2, Differ. Uravn., 8 (1972), 1435-1439; Differ. Equ., 8 (1972), 1104-1107.  Google Scholar

[2]

L. A. Cherkas, Conditions for a center for the equation $P_3(x) yy'=\sum_{i=0}^2 P_i(x)y^i$ , Differ. Uravn., 10 (1974), 367-368; Differ. Equ., 10 (1974), 276-277.  Google Scholar

[3]

L. A. Cherkas, Conditions for a center for a certain Lienard equation, Differ. Uravn., 12 (1976), 292-298; Differ. Equ., 12 (1976), 201-206.  Google Scholar

[4]

L. A. Cherkas, Conditions for the equation $yy'=\sum_{i=0}^3 P_i(x)y^i$ to have a center, Differ. Uravn., 14 (1978), 1594-1600; Differ. Equ., 14 (1978), 1133-1137.  Google Scholar

[5]

C. J. Christopher, An algebraic approach to the classification of centres in polynomial Liénard systems, J. Math. Anal. Appl., 229 (1999), 319-329. doi: 10.1006/jmaa.1998.6175.  Google Scholar

[6]

C. J. Christopher and C. Li, Limit Cycles of Differential Equations, Advanced Courses in Mathematics. CRM Barcelona. Birkhäuser-Verlag, Basel, 2007.  Google Scholar

[7]

C. J. Christopher and D. Schlomiuk, On general algebraic mechanisms for producing centers in polynomial differential systems, J. Fixed Point Theory Appl., 3 (2008), 331-351. doi: 10.1007/s11784-008-0077-2.  Google Scholar

[8]

W. Decker, S. Laplagne, G. Pfister and H. A. Schonemann, SINGULAR, 3-1 library for computing the prime decomposition and radical of ideals, primdec. lib, 2010. Google Scholar

[9]

B. FerČec, J. Giné, V. G. Romanovski and V. F. Edneral, Integrability of complex planar systems with homogeneous nonlinearities, J. Math. Anal. Appl., 434 (2016), 894-914. doi: 10.1016/j.jmaa.2015.09.037.  Google Scholar

[10]

P. Gianni, B. Trager and G. Zacharias, Gröbner bases and primary decompositions of polynomials, J. Symbolic Comput., 6 (1988) 146-167. doi: 10.1016/S0747-7171(88)80040-3.  Google Scholar

[11]

J. Giné, Singularity analysis in planar vector fields, J. Math. Phys., 55 (2014), 112703. doi: 10.1063/1.4901544.  Google Scholar

[12]

J. Giné, Center conditions for polynomial Liénard systems, Qual. Theory Dyn. Syst. , to appear. doi: 10.1007/s12346-016-0202-3.  Google Scholar

[13]

J. Giné, J. Llibre, Analytic reducibility of nondegenerate centers: Cherkas systems, Electron. J. Qual. Theory Differ. Equ., 49 (2016), 1-10. doi: 10.14232/ejqtde.2016.1.49.  Google Scholar

[14]

G. M. Greuel, G. Pfister and H. A. Schönemann, SINGULAR 3. 0, A Computer Algebra System for Polynomial Computations, Centre for Computer Algebra, University of Kaiserlautern (2005). http://www.singular.uni-kl.de. Google Scholar

[15]

I. S. Kukles, Sur quelques cas de distinction entre un foyer et un centre, Dolk. Akad. Nauk SSSR, 42 (1944), 208-211.  Google Scholar

[16]

A. A. Kushner and A. P. Sadovskii, Center conditions for Lienard-type systems of degree four, Vestn. Beloruss. Gos. Univ. Ser. 1 Fiz. Mat. Inform. , (2011), 119-122 (Russian).  Google Scholar

[17]

J. Llibre and R. Rabanal, Center conditions for a class of planar rigid polynomial differential systems, Discrete Contin. Dyn. Syst., 35 (2015), 1075-1090. doi: 10.3934/dcds.2015.35.1075.  Google Scholar

[18]

N. G. Lloyd and J. M. Pearson, Computing centre conditions for certain cubic systems, J. Comp. Appl. Math., 40 (1992), 323-336. doi: 10.1016/0377-0427(92)90188-4.  Google Scholar

[19]

J. M. Pearson and N. G. Lloyd, Kukles revisited: Advances in computing techniques, Comp. Math. Appl., 60 (2010), 2797-2805. doi: 10.1016/j.camwa.2010.09.034.  Google Scholar

[20]

V. G. Romanovski and M. PreŠern, An approach to solving systems of polynomials via modular arithmetics with applications, J. Comput. Appl. Math., 236 (2011), 196-208. doi: 10.1016/j.cam.2011.06.018.  Google Scholar

[21]

V. G. Romanovski and D. S. Shafer, The Center and Cyclicity Problems: A Computational Algebra Approach, Birkhauser Boston, Inc. , Boston, MA, 2009. doi: 10.1007/978-0-8176-4727-8.  Google Scholar

[22]

A. P. Sadovskii, Solution of the center and focus problem for a cubic system of nonlinear oscillations, Differ. Uravn. , 33 (1997), 236-244 (Russian); Differential Equations, 33 (1997), 236-244.  Google Scholar

[23]

A. P. Sadovskii, On conditions for a center and focus for nonlinear oscillation equations, Differ. Uravn. , 15 (1979), 1716-1719 (Russian); Differential Equations, 15 (1979), 1226-1229.  Google Scholar

[24]

A. P. Sadovskii and T. V. Shcheglova, Solution of the center-focus problem for a cubic system with nine parameters, Differ. Uravn. , 47 (2011), 209-224 (Russian); Differential Equations, 47 (2011), 208-223. doi: 10.1134/S0012266111020078.  Google Scholar

[25]

A. P. Sadovskii and T. V. Shcheglova, Center conditions for a polynomial differential system, Differ. Uravn. , 49 (2013), 151-164; Differencial Equations, 49 (2013), 151-165. doi: 10.1134/S001226611302002X.  Google Scholar

[26]

P. S. Wang, M. J. T. Guy and J. H. Davenport, P-adic reconstruction of rational numbers, SIGSAM Bull., 16 (1982), 2-3. Google Scholar

show all references

References:
[1]

L. A. Cherkas, On the conditions for a center for certain equations of the form yy′ = P(x) + Q(x)y + R(x)y2, Differ. Uravn., 8 (1972), 1435-1439; Differ. Equ., 8 (1972), 1104-1107.  Google Scholar

[2]

L. A. Cherkas, Conditions for a center for the equation $P_3(x) yy'=\sum_{i=0}^2 P_i(x)y^i$ , Differ. Uravn., 10 (1974), 367-368; Differ. Equ., 10 (1974), 276-277.  Google Scholar

[3]

L. A. Cherkas, Conditions for a center for a certain Lienard equation, Differ. Uravn., 12 (1976), 292-298; Differ. Equ., 12 (1976), 201-206.  Google Scholar

[4]

L. A. Cherkas, Conditions for the equation $yy'=\sum_{i=0}^3 P_i(x)y^i$ to have a center, Differ. Uravn., 14 (1978), 1594-1600; Differ. Equ., 14 (1978), 1133-1137.  Google Scholar

[5]

C. J. Christopher, An algebraic approach to the classification of centres in polynomial Liénard systems, J. Math. Anal. Appl., 229 (1999), 319-329. doi: 10.1006/jmaa.1998.6175.  Google Scholar

[6]

C. J. Christopher and C. Li, Limit Cycles of Differential Equations, Advanced Courses in Mathematics. CRM Barcelona. Birkhäuser-Verlag, Basel, 2007.  Google Scholar

[7]

C. J. Christopher and D. Schlomiuk, On general algebraic mechanisms for producing centers in polynomial differential systems, J. Fixed Point Theory Appl., 3 (2008), 331-351. doi: 10.1007/s11784-008-0077-2.  Google Scholar

[8]

W. Decker, S. Laplagne, G. Pfister and H. A. Schonemann, SINGULAR, 3-1 library for computing the prime decomposition and radical of ideals, primdec. lib, 2010. Google Scholar

[9]

B. FerČec, J. Giné, V. G. Romanovski and V. F. Edneral, Integrability of complex planar systems with homogeneous nonlinearities, J. Math. Anal. Appl., 434 (2016), 894-914. doi: 10.1016/j.jmaa.2015.09.037.  Google Scholar

[10]

P. Gianni, B. Trager and G. Zacharias, Gröbner bases and primary decompositions of polynomials, J. Symbolic Comput., 6 (1988) 146-167. doi: 10.1016/S0747-7171(88)80040-3.  Google Scholar

[11]

J. Giné, Singularity analysis in planar vector fields, J. Math. Phys., 55 (2014), 112703. doi: 10.1063/1.4901544.  Google Scholar

[12]

J. Giné, Center conditions for polynomial Liénard systems, Qual. Theory Dyn. Syst. , to appear. doi: 10.1007/s12346-016-0202-3.  Google Scholar

[13]

J. Giné, J. Llibre, Analytic reducibility of nondegenerate centers: Cherkas systems, Electron. J. Qual. Theory Differ. Equ., 49 (2016), 1-10. doi: 10.14232/ejqtde.2016.1.49.  Google Scholar

[14]

G. M. Greuel, G. Pfister and H. A. Schönemann, SINGULAR 3. 0, A Computer Algebra System for Polynomial Computations, Centre for Computer Algebra, University of Kaiserlautern (2005). http://www.singular.uni-kl.de. Google Scholar

[15]

I. S. Kukles, Sur quelques cas de distinction entre un foyer et un centre, Dolk. Akad. Nauk SSSR, 42 (1944), 208-211.  Google Scholar

[16]

A. A. Kushner and A. P. Sadovskii, Center conditions for Lienard-type systems of degree four, Vestn. Beloruss. Gos. Univ. Ser. 1 Fiz. Mat. Inform. , (2011), 119-122 (Russian).  Google Scholar

[17]

J. Llibre and R. Rabanal, Center conditions for a class of planar rigid polynomial differential systems, Discrete Contin. Dyn. Syst., 35 (2015), 1075-1090. doi: 10.3934/dcds.2015.35.1075.  Google Scholar

[18]

N. G. Lloyd and J. M. Pearson, Computing centre conditions for certain cubic systems, J. Comp. Appl. Math., 40 (1992), 323-336. doi: 10.1016/0377-0427(92)90188-4.  Google Scholar

[19]

J. M. Pearson and N. G. Lloyd, Kukles revisited: Advances in computing techniques, Comp. Math. Appl., 60 (2010), 2797-2805. doi: 10.1016/j.camwa.2010.09.034.  Google Scholar

[20]

V. G. Romanovski and M. PreŠern, An approach to solving systems of polynomials via modular arithmetics with applications, J. Comput. Appl. Math., 236 (2011), 196-208. doi: 10.1016/j.cam.2011.06.018.  Google Scholar

[21]

V. G. Romanovski and D. S. Shafer, The Center and Cyclicity Problems: A Computational Algebra Approach, Birkhauser Boston, Inc. , Boston, MA, 2009. doi: 10.1007/978-0-8176-4727-8.  Google Scholar

[22]

A. P. Sadovskii, Solution of the center and focus problem for a cubic system of nonlinear oscillations, Differ. Uravn. , 33 (1997), 236-244 (Russian); Differential Equations, 33 (1997), 236-244.  Google Scholar

[23]

A. P. Sadovskii, On conditions for a center and focus for nonlinear oscillation equations, Differ. Uravn. , 15 (1979), 1716-1719 (Russian); Differential Equations, 15 (1979), 1226-1229.  Google Scholar

[24]

A. P. Sadovskii and T. V. Shcheglova, Solution of the center-focus problem for a cubic system with nine parameters, Differ. Uravn. , 47 (2011), 209-224 (Russian); Differential Equations, 47 (2011), 208-223. doi: 10.1134/S0012266111020078.  Google Scholar

[25]

A. P. Sadovskii and T. V. Shcheglova, Center conditions for a polynomial differential system, Differ. Uravn. , 49 (2013), 151-164; Differencial Equations, 49 (2013), 151-165. doi: 10.1134/S001226611302002X.  Google Scholar

[26]

P. S. Wang, M. J. T. Guy and J. H. Davenport, P-adic reconstruction of rational numbers, SIGSAM Bull., 16 (1982), 2-3. Google Scholar

[1]

Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029

[2]

Montserrat Corbera, Claudia Valls. Reversible polynomial Hamiltonian systems of degree 3 with nilpotent saddles. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3209-3233. doi: 10.3934/dcdsb.2020225

[3]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[4]

Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182

[5]

Xiongxiong Bao, Wan-Tong Li. Existence and stability of generalized transition waves for time-dependent reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3621-3641. doi: 10.3934/dcdsb.2020249

[6]

Takeshi Saito, Kazuyuki Yagasaki. Chebyshev spectral methods for computing center manifolds. Journal of Computational Dynamics, 2021  doi: 10.3934/jcd.2021008

[7]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[8]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[9]

Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79

[10]

Raphaël Côte, Frédéric Valet. Polynomial growth of high sobolev norms of solutions to the Zakharov-Kuznetsov equation. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1039-1058. doi: 10.3934/cpaa.2021005

[11]

Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3579-3614. doi: 10.3934/dcds.2021008

[12]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[13]

Ethan Akin, Julia Saccamano. Generalized intransitive dice II: Partition constructions. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021005

[14]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[15]

Lars Grüne, Luca Mechelli, Simon Pirkelmann, Stefan Volkwein. Performance estimates for economic model predictive control and their application in proper orthogonal decomposition-based implementations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021013

[16]

Azeddine Elmajidi, Elhoussine Elmazoudi, Jamila Elalami, Noureddine Elalami. Dependent delay stability characterization for a polynomial T-S Carbon Dioxide model. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021035

[17]

Shuting Chen, Zengji Du, Jiang Liu, Ke Wang. The dynamic properties of a generalized Kawahara equation with Kuramoto-Sivashinsky perturbation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021098

[18]

Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021056

[19]

Zhenquan Zhang, Meiling Chen, Jiajun Zhang, Tianshou Zhou. Analysis of non-Markovian effects in generalized birth-death models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3717-3735. doi: 10.3934/dcdsb.2020254

[20]

Ricardo A. Podestá, Denis E. Videla. The weight distribution of irreducible cyclic codes associated with decomposable generalized Paley graphs. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021002

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (62)
  • HTML views (54)
  • Cited by (3)

Other articles
by authors

[Back to Top]