• Previous Article
    Estimates for eigenvalues of a system of elliptic equations with drift and of bi-drifting laplacian
  • CPAA Home
  • This Issue
  • Next Article
    Diffusive predator-prey models with stage structure on prey and beddington-deangelis functional responses
March  2017, 6(2): 443-474. doi: 10.3934/cpaa.2017023

Existence and upper semicontinuity of (L2, Lq) pullback attractors for a stochastic p-laplacian equation

Department of Mathematics, Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai, 200241, China

xlfu@math.ecnu.edu.cn (X. Fu, the corresponding author)

Received  February 2016 Revised  October 2016 Published  January 2017

Fund Project: This research is supported by NSFof China (Nos. 11671142 and11371087), Science and Technology Commission of Shanghai Municipality (No. 13dz2260400) and Shanghai Leading Academic Discipline Project (No. B407), respectively.

In this paper we study the dynamical behavior of solutions for a non-autonomous $p$-Laplacian equation driven by a white noise term. We first establish the abstract results on existence and continuity of bi-spatial pullback random attractors for a cocycle. Then by conducting some tail estimates and applying the obtained abstract results we show the existence and upper semi-continuity of $(L^{2}(\mathbb{R}^{n}), L^{q}(\mathbb{R}^{n}))$-pullback attractors for this $p$-Laplacian equation.

Citation: Linfang Liu, Xianlong Fu. Existence and upper semicontinuity of (L2, Lq) pullback attractors for a stochastic p-laplacian equation. Communications on Pure & Applied Analysis, 2017, 6 (2) : 443-474. doi: 10.3934/cpaa.2017023
References:
[1]

C. Anh, T. Bao and N. Thanh, Regularity of random attractors for stochastic semi-linear degenerate parabolic equations, Electr. J. Diff. Equ., 207 (2012), 1-25.  Google Scholar

[2] L. Arnold, Random Dynamical Systems, Spring-Verlag, New-York, Berlin, 1998.  doi: 10.1007/978-3-662-12878-7.  Google Scholar
[3]

J. Ball, Continuity properties and global attractors of gernerlized semiflows and the NaiverStokes equations, J. Nonl. Sci., 7 (1997), 475-502. doi: 10.1007/s003329900037.  Google Scholar

[4] E. Benedetto, Degenerate Parabolic Equations, Springer-Verlag, New York, 1993.  doi: 10.1007/978-1-4612-0895-2.  Google Scholar
[5]

H. Crauel and F. Flandoli, Attractors for random dynamical systems, Prob. Th. Re. Fields., 100 (1994), 365-393. doi: 10.1007/BF01193705.  Google Scholar

[6]

G. Chen, Uniform attractors for the non-autonomous parabolic equation with nonlinear Laplacian principal part in unbounded domain, Diff. Equ. Appl., 2 (2010), 105-121. doi: 10.7153/dea-02-08.  Google Scholar

[7]

A. Carvalho and J. Langa, Non-autonomous perturbation of autonomous semilinear differential equations: continuity of local stable and unstable manifolds, J. Diff. Equ., 233 (2007), 622-653. doi: 10.1016/j.jde.2006.08.009.  Google Scholar

[8]

A. Carvalho, J. Langa and J. Robinson, Attractors for Infinite-Dimensional Non-autonomous Dynamcia Systems, Appl. Math. Sciences, Springer, 2013. doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[9]

T. Caraballo, G. Lukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonl. Anal., 64 (2006), 484-498. doi: 10.1016/j.na.2005.03.111.  Google Scholar

[10]

T. Caraballo, G. Lukaszewicz and J. Real, Pullback attractors for non-autonomous 2D-NavierStokes equations in some unbounded domains, CR. Acad. Sci. Pari. Ser., 342 (2006), 263-268. doi: 10.1016/j.crma.2005.12.015.  Google Scholar

[11]

V. Chepyzhov and M. Vishik, Attractors of non-autonomous dynamical systems and their dimensions, J. Math. Pures. Appl., 73 (1994), 279-333. Google Scholar

[12] K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1985.  doi: 10.1007/978-3-662-00547-7.  Google Scholar
[13]

B. Gess, Random attractors for singular stochastic evolution equations, J. Diff. Equ., 255 (2013), 524-559. doi: 10.1016/j.jde.2013.04.023.  Google Scholar

[14]

K. Wiesenfeld and F. Moss, Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs, Nature, 373 (1995), 33-35. Google Scholar

[15]

A. Khanmamedov, Existence of a global attractor for the parabolic equation with nonlinear Laplacian principal part in an unbounded domain, J. Math. Anal. Appl., 316 (2006), 601-615. doi: 10.1016/j.jmaa.2005.05.003.  Google Scholar

[16]

A. Krause, M. Lewis and B. Wang, Dynamics of the non-autonomous stochastic p-Laplace equation driven by multiplicative noise, Appl. Math. Comput., 246 (2014), 365-376. doi: 10.1016/j.amc.2014.08.033.  Google Scholar

[17]

A. Krause, B. Wang, Pullback attractors of non-autonomous stochastic degenerate parabolic equations on unbounded domains, J. Math. Anal. Appl., 417 (2014), 1018-1038. doi: 10.1016/j.jmaa.2014.03.037.  Google Scholar

[18]

Y. Li and B. Guo, Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations, J. Diff. Equ., 245 (2008), 1775-1800. doi: 10.1016/j.jde.2008.06.031.  Google Scholar

[19]

Y. Li, A. Gu and J. Li, Existence and continuity of bi-spatial random attractors and application to stochastic semilinear Laplacian equations, J. Diff. Equ., 258 (2015), 504-534. doi: 10.1016/j.jde.2014.09.021.  Google Scholar

[20]

J. Li, Y. Li and H. Cui, Existence and upper semicontinuity of random attractors for stochastic p-Laplaican equations on unbounded domains, Electr. J. Diff. Equ., 2014 (2014), 1-27. Google Scholar

[21]

G. Lukaszewicz and A. Tarasinska, On H1-pullback attractors for non-autonomous micropolar fluid equations in a bounded domains, Nonl. Anal., 71 (2009), 782-788. doi: 10.1016/j.na.2008.10.124.  Google Scholar

[22]

H. Li, Y. You and J. Tu, Random attractors and averging for non-autonomous stochastic wave equations with nonlinear damping, J. Diff. Equ., 258 (2015), 148-190. doi: 10.1016/j.jde.2014.09.007.  Google Scholar

[23]

Y. Li and C. Zhong, Pullback attractors for the norm-to-weak continuous process and application to the nonautonomous reaction-diffusion equations, Appl. Math. Comp., 190 (2007), 1020-1029. doi: 10.1016/j.amc.2006.11.187.  Google Scholar

[24]

J. Robinson, Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge Univ. Press, 2001. doi: 10.1007/978-94-010-0732-0.  Google Scholar

[25]

B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations, in International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behaviour, (1992), 185-192. Google Scholar

[26]

J. Simsen and E. Junior, Existence and upper semicontinuity of global attractors for a pLaplacian inclusion, Bol. Soc. Paran. Mat., 1 (2015), 235-245.  Google Scholar

[27]

J. Simsen, M. Nascimento and M. Simsen, Existence and upper semicontinuity of pullback attractors for non-autonomous p-Laplacian parabolic problems, J. Math. Anal. Appl., 413 (2014), 685-699. doi: 10.1016/j.jmaa.2013.12.019.  Google Scholar

[28]

C. Sun and C. Zhong, Attractors for the semilinear reaction-diffusion equation with distribution derivatives in unbounded domains, Nonl. Anal., 63 (2005), 49-65. doi: 10.1016/j.na.2005.04.034.  Google Scholar

[29] R. Temman, Infinite Dimensional Dynamical Systems in Mechanics and Physics, SpringVerlag, New York, 1998.  doi: 10.1007/978-1-4684-0313-8.  Google Scholar
[30] H. Tuckwell, Introduction to Theoretical Neurobiology: Nonlinear and Stochastic Theories, Cambridge University Press, Cambridge, 1998.   Google Scholar
[31]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical system, J. Diff. Equ., 253 (2012), 1544-1583. doi: 10.1016/j.jde.2012.05.015.  Google Scholar

[32]

B. Wang, Existence and Upper Semicontinuity of Attractors for Stochastic Equations with Deterministic Non-autonomous Terms, Stoch. Dynam., 14 (2014), 1-31. doi: 10.1142/S0219493714500099.  Google Scholar

[33]

B. Wang and L. Guo, Asymptotic behavior of non-autonomous stochastic parabolic equations with nonliear laplacian principal part, Electr. J. of Diff. Equ., 2013 (2013), 1-25. Google Scholar

[34]

Y. Wang and J. Wang, Pullback attractors for multi-valued non-compact random dynamical systems generated by reaction-diffusion equations on an unbounded domain, J. Diff. Equ., 259 (2015), 728-776. doi: 10.1016/j.jde.2015.02.026.  Google Scholar

[35]

M. Yang, C. Sun and C. Zhong, Existence of a global attractor for a p-Laplacian equation in $\mathbb{R}.{n}$, Nonl. Anal., 66 (2007), 1-13. doi: 10.1016/j.na.2005.11.004.  Google Scholar

[36]

Y. You, Random dynamics of stochastic reaction-diffusion systems with additive noise, J. Dyn. Diff. Equ., DOI: 10.1007/s10884-015-9431-4, in press, (2015). doi: 10.1007/s10884-015-9431-4.  Google Scholar

[37]

W. Zhao and R. Li, (L2, Lp)-random attractors for stochastic reaction-diffusion equation on unbounded domains, Nonl. Anal., 75 (2012), 485-502. doi: 10.1016/j.na.2011.08.050.  Google Scholar

[38]

C. Zhong, M. Yang and C. Sun, The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations, J. Diff. Equ., 223 (2006), 367-399. doi: 10.1016/j.jde.2005.06.008.  Google Scholar

show all references

References:
[1]

C. Anh, T. Bao and N. Thanh, Regularity of random attractors for stochastic semi-linear degenerate parabolic equations, Electr. J. Diff. Equ., 207 (2012), 1-25.  Google Scholar

[2] L. Arnold, Random Dynamical Systems, Spring-Verlag, New-York, Berlin, 1998.  doi: 10.1007/978-3-662-12878-7.  Google Scholar
[3]

J. Ball, Continuity properties and global attractors of gernerlized semiflows and the NaiverStokes equations, J. Nonl. Sci., 7 (1997), 475-502. doi: 10.1007/s003329900037.  Google Scholar

[4] E. Benedetto, Degenerate Parabolic Equations, Springer-Verlag, New York, 1993.  doi: 10.1007/978-1-4612-0895-2.  Google Scholar
[5]

H. Crauel and F. Flandoli, Attractors for random dynamical systems, Prob. Th. Re. Fields., 100 (1994), 365-393. doi: 10.1007/BF01193705.  Google Scholar

[6]

G. Chen, Uniform attractors for the non-autonomous parabolic equation with nonlinear Laplacian principal part in unbounded domain, Diff. Equ. Appl., 2 (2010), 105-121. doi: 10.7153/dea-02-08.  Google Scholar

[7]

A. Carvalho and J. Langa, Non-autonomous perturbation of autonomous semilinear differential equations: continuity of local stable and unstable manifolds, J. Diff. Equ., 233 (2007), 622-653. doi: 10.1016/j.jde.2006.08.009.  Google Scholar

[8]

A. Carvalho, J. Langa and J. Robinson, Attractors for Infinite-Dimensional Non-autonomous Dynamcia Systems, Appl. Math. Sciences, Springer, 2013. doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[9]

T. Caraballo, G. Lukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonl. Anal., 64 (2006), 484-498. doi: 10.1016/j.na.2005.03.111.  Google Scholar

[10]

T. Caraballo, G. Lukaszewicz and J. Real, Pullback attractors for non-autonomous 2D-NavierStokes equations in some unbounded domains, CR. Acad. Sci. Pari. Ser., 342 (2006), 263-268. doi: 10.1016/j.crma.2005.12.015.  Google Scholar

[11]

V. Chepyzhov and M. Vishik, Attractors of non-autonomous dynamical systems and their dimensions, J. Math. Pures. Appl., 73 (1994), 279-333. Google Scholar

[12] K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1985.  doi: 10.1007/978-3-662-00547-7.  Google Scholar
[13]

B. Gess, Random attractors for singular stochastic evolution equations, J. Diff. Equ., 255 (2013), 524-559. doi: 10.1016/j.jde.2013.04.023.  Google Scholar

[14]

K. Wiesenfeld and F. Moss, Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs, Nature, 373 (1995), 33-35. Google Scholar

[15]

A. Khanmamedov, Existence of a global attractor for the parabolic equation with nonlinear Laplacian principal part in an unbounded domain, J. Math. Anal. Appl., 316 (2006), 601-615. doi: 10.1016/j.jmaa.2005.05.003.  Google Scholar

[16]

A. Krause, M. Lewis and B. Wang, Dynamics of the non-autonomous stochastic p-Laplace equation driven by multiplicative noise, Appl. Math. Comput., 246 (2014), 365-376. doi: 10.1016/j.amc.2014.08.033.  Google Scholar

[17]

A. Krause, B. Wang, Pullback attractors of non-autonomous stochastic degenerate parabolic equations on unbounded domains, J. Math. Anal. Appl., 417 (2014), 1018-1038. doi: 10.1016/j.jmaa.2014.03.037.  Google Scholar

[18]

Y. Li and B. Guo, Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations, J. Diff. Equ., 245 (2008), 1775-1800. doi: 10.1016/j.jde.2008.06.031.  Google Scholar

[19]

Y. Li, A. Gu and J. Li, Existence and continuity of bi-spatial random attractors and application to stochastic semilinear Laplacian equations, J. Diff. Equ., 258 (2015), 504-534. doi: 10.1016/j.jde.2014.09.021.  Google Scholar

[20]

J. Li, Y. Li and H. Cui, Existence and upper semicontinuity of random attractors for stochastic p-Laplaican equations on unbounded domains, Electr. J. Diff. Equ., 2014 (2014), 1-27. Google Scholar

[21]

G. Lukaszewicz and A. Tarasinska, On H1-pullback attractors for non-autonomous micropolar fluid equations in a bounded domains, Nonl. Anal., 71 (2009), 782-788. doi: 10.1016/j.na.2008.10.124.  Google Scholar

[22]

H. Li, Y. You and J. Tu, Random attractors and averging for non-autonomous stochastic wave equations with nonlinear damping, J. Diff. Equ., 258 (2015), 148-190. doi: 10.1016/j.jde.2014.09.007.  Google Scholar

[23]

Y. Li and C. Zhong, Pullback attractors for the norm-to-weak continuous process and application to the nonautonomous reaction-diffusion equations, Appl. Math. Comp., 190 (2007), 1020-1029. doi: 10.1016/j.amc.2006.11.187.  Google Scholar

[24]

J. Robinson, Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge Univ. Press, 2001. doi: 10.1007/978-94-010-0732-0.  Google Scholar

[25]

B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations, in International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behaviour, (1992), 185-192. Google Scholar

[26]

J. Simsen and E. Junior, Existence and upper semicontinuity of global attractors for a pLaplacian inclusion, Bol. Soc. Paran. Mat., 1 (2015), 235-245.  Google Scholar

[27]

J. Simsen, M. Nascimento and M. Simsen, Existence and upper semicontinuity of pullback attractors for non-autonomous p-Laplacian parabolic problems, J. Math. Anal. Appl., 413 (2014), 685-699. doi: 10.1016/j.jmaa.2013.12.019.  Google Scholar

[28]

C. Sun and C. Zhong, Attractors for the semilinear reaction-diffusion equation with distribution derivatives in unbounded domains, Nonl. Anal., 63 (2005), 49-65. doi: 10.1016/j.na.2005.04.034.  Google Scholar

[29] R. Temman, Infinite Dimensional Dynamical Systems in Mechanics and Physics, SpringVerlag, New York, 1998.  doi: 10.1007/978-1-4684-0313-8.  Google Scholar
[30] H. Tuckwell, Introduction to Theoretical Neurobiology: Nonlinear and Stochastic Theories, Cambridge University Press, Cambridge, 1998.   Google Scholar
[31]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical system, J. Diff. Equ., 253 (2012), 1544-1583. doi: 10.1016/j.jde.2012.05.015.  Google Scholar

[32]

B. Wang, Existence and Upper Semicontinuity of Attractors for Stochastic Equations with Deterministic Non-autonomous Terms, Stoch. Dynam., 14 (2014), 1-31. doi: 10.1142/S0219493714500099.  Google Scholar

[33]

B. Wang and L. Guo, Asymptotic behavior of non-autonomous stochastic parabolic equations with nonliear laplacian principal part, Electr. J. of Diff. Equ., 2013 (2013), 1-25. Google Scholar

[34]

Y. Wang and J. Wang, Pullback attractors for multi-valued non-compact random dynamical systems generated by reaction-diffusion equations on an unbounded domain, J. Diff. Equ., 259 (2015), 728-776. doi: 10.1016/j.jde.2015.02.026.  Google Scholar

[35]

M. Yang, C. Sun and C. Zhong, Existence of a global attractor for a p-Laplacian equation in $\mathbb{R}.{n}$, Nonl. Anal., 66 (2007), 1-13. doi: 10.1016/j.na.2005.11.004.  Google Scholar

[36]

Y. You, Random dynamics of stochastic reaction-diffusion systems with additive noise, J. Dyn. Diff. Equ., DOI: 10.1007/s10884-015-9431-4, in press, (2015). doi: 10.1007/s10884-015-9431-4.  Google Scholar

[37]

W. Zhao and R. Li, (L2, Lp)-random attractors for stochastic reaction-diffusion equation on unbounded domains, Nonl. Anal., 75 (2012), 485-502. doi: 10.1016/j.na.2011.08.050.  Google Scholar

[38]

C. Zhong, M. Yang and C. Sun, The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations, J. Diff. Equ., 223 (2006), 367-399. doi: 10.1016/j.jde.2005.06.008.  Google Scholar

[1]

Xuping Zhang. Pullback random attractors for fractional stochastic $ p $-Laplacian equation with delay and multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021107

[2]

Meiqiang Feng, Yichen Zhang. Positive solutions of singular multiparameter p-Laplacian elliptic systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021083

[3]

Shuang Wang, Dingbian Qian. Periodic solutions of p-Laplacian equations via rotation numbers. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021060

[4]

Anhui Gu. Weak pullback mean random attractors for non-autonomous $ p $-Laplacian equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3863-3878. doi: 10.3934/dcdsb.2020266

[5]

Matheus C. Bortolan, José Manuel Uzal. Upper and weak-lower semicontinuity of pullback attractors to impulsive evolution processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3667-3692. doi: 10.3934/dcdsb.2020252

[6]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2739-2776. doi: 10.3934/dcds.2020384

[7]

Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021031

[8]

Jiacheng Wang, Peng-Fei Yao. On the attractor for a semilinear wave equation with variable coefficients and nonlinear boundary dissipation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021043

[9]

Alfonso Castro, Jorge Cossio, Sigifredo Herrón, Carlos Vélez. Infinitely many radial solutions for a $ p $-Laplacian problem with indefinite weight. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021058

[10]

Said Taarabti. Positive solutions for the $ p(x)- $Laplacian : Application of the Nehari method. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021029

[11]

Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3211-3240. doi: 10.3934/dcds.2020403

[12]

Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021011

[13]

Pengyan Ding, Zhijian Yang. Well-posedness and attractor for a strongly damped wave equation with supercritical nonlinearity on $ \mathbb{R}^{N} $. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1059-1076. doi: 10.3934/cpaa.2021006

[14]

Yangrong Li, Fengling Wang, Shuang Yang. Part-convergent cocycles and semi-convergent attractors of stochastic 2D-Ginzburg-Landau delay equations toward zero-memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3643-3665. doi: 10.3934/dcdsb.2020250

[15]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[16]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[17]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[18]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1757-1778. doi: 10.3934/dcdss.2020453

[19]

Joel Coacalle, Andrew Raich. Compactness of the complex Green operator on non-pseudoconvex CR manifolds. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021061

[20]

Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3683-3708. doi: 10.3934/dcds.2021012

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (89)
  • HTML views (55)
  • Cited by (2)

Other articles
by authors

[Back to Top]