March  2017, 16(2): 513-532. doi: 10.3934/cpaa.2017026

Liouville theorems for elliptic problems in variable exponent spaces

1. 

Institute of Mathematics, Krakow University of Technology, ul. Warszawska 24, 31-155 Krakow, Poland

2. 

Institute of Applied Mathematics and Mechanics, University of Warsaw, ul. Banacha 2, 02-097 Warsaw, Poland

Received  May 2016 Revised  November 2016 Published  January 2017

We investigate nonexistence of nonnegative solutions to a partial differential inequality involving the p(x){Laplacian of the form
$- {\Delta _{p(x)}}u \geqslant \Phi (x,u(x),\nabla u(x))$
in ${\mathbb{R}^n}$, as well as in outer domain $\Omega \subseteq {\mathbb{R}^n}$, where Φ(x; u; ∇u) is a locally integrable Carathéodory’s function. We assume that Φ(x; u; ∇u) ≥ 0 or compatible with p and u. Growth conditions on u and p lead to Liouville-type results for u.
Citation: SYLWIA DUDEK, IWONA SKRZYPCZAK. Liouville theorems for elliptic problems in variable exponent spaces. Communications on Pure & Applied Analysis, 2017, 16 (2) : 513-532. doi: 10.3934/cpaa.2017026
References:
[1]

E. Acerbi, I. Fonseca and G. Mingione, Existence and regularity for mixtures of micromagnetic materials, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462 (2006), 2225-2243. doi: 10.1098/rspa.2006.1655.  Google Scholar

[2]

E. Acerbi and G. Mingione, Regularity results for a class of functionals with non-standard growth, Arch. Ration. Mech. Anal., 156 (2001), 121-140. doi: 10.1007/s002050100117.  Google Scholar

[3]

E. Acerbi and G. Mingione, Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal., 164 (2002), 213-259. doi: 10.1007/s00205-002-0208-7.  Google Scholar

[4]

T. Adamowicz and P. Górka, The Liouville theorems for elliptic equations with nonstandard growth, Commun. Pure Appl. Anal., 14 (2015), 2377-2392. doi: 10.3934/cpaa.2015.14.2377.  Google Scholar

[5]

A. Baalal and A. Qabil, Liouville-type result for quasilinear elliptic problems with variable exponent, Int. J. Pure Appl. Math., 104 (2015), 57-68. Google Scholar

[6]

S. Barnás, Existence results for hemivariational inequality involving p(x)-Laplacian, Opuscula Math., 32 (2012), 439-454. doi: 10.7494/OpMath.2012.32.3.439.  Google Scholar

[7]

A. Blanchet, M. Bonforte, J. Dolbeault, G. Grillo and J.-L. Vázquez, Hardy-Poincaré inequalities and applications to nonlinear diffusions, C. R. Math. Acad. Sci. Paris, 344 (2007), 431-436. doi: 10.1016/j.crma.2007.01.011.  Google Scholar

[8]

B. Bojarski and P. Hałlasz, Pointwise inequalities for Sobolev functions and some applications, Studia Math., 106 (1993), 77-92.  Google Scholar

[9]

Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006), 1383-1406. doi: 10.1137/050624522.  Google Scholar

[10]

D. V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces. Foundations and Harmonic Analysis, Birkhäuser/Springer, Heidelberg, 2013. doi: 10.1007/978-3-0348-0548-3.  Google Scholar

[11]

L. D'Ambrosio, Liouville theorems for anisotropic quasilinear inequalities, Nonlinear Anal., 70 (2009), 2855-2869. doi: 10.1016/j.na.2008.12.028.  Google Scholar

[12]

L. D'Ambrosio and E. Mitidieri, A priori estimates, positivity results, and nonexistence theorems for quasilinear degenerate elliptic inequalities, Adv. Math., 224 (2010), 967-1020. doi: 10.1016/j.aim.2009.12.017.  Google Scholar

[13]

L. D'Ambrosio and E. Mitidieri, A priori estimates and reduction principles for quasilinear elliptic problems and applications, Adv. Differential Equations, 17 (2012), 935-1000.  Google Scholar

[14]

L. D'Ambrosio and E. Mitidieri, Liouville theorems for elliptic systems and applications, J. Math. Anal. Appl., 413 (2014), 121-138. doi: 10.1016/j.jmaa.2013.11.052.  Google Scholar

[15]

R. N. Dhara and A. Ka lamajska, On equivalent conditions for the validity of Poincaré inequality on weighted Sobolev space with applications to the solvability of degenerated PDEs involving p-Laplacian, J. Math. Anal. Appl., 432 (2015), 463-483. doi: 10.1016/j.jmaa.2015.06.068.  Google Scholar

[16]

L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev spaces with variable exponents, Springer, Heidelberg, 2011. Lecture Notes in Mathematics, 2017. Google Scholar

[17]

T.-L. Dinu, Entire solutions of multivalued nonlinear Schrödinger equations in Sobolev spaces with variable exponent, Nonlinear Anal., 65 (2006), 1414-1424. doi: 10.1016/j.na.2005.10.022.  Google Scholar

[18]

O. Došlý and R. Mařík, Nonexistence of positive solutions of PDE's with p-Laplacian, Acta Math. Hungar., 90 (2001), 89-107. doi: 10.1023/A:1006739909182.  Google Scholar

[19]

P. Drábek, A. Ka lamajska and I. Skrzypczak, Caccioppoli-type estimates and Hardy-type inequalities derived from degenerated p-harmonic problems, preprint, 2016. Google Scholar

[20]

X. Fan, On the positive solutions of p(x)-laplace equation, J. Gansu Educ. College, 15 (2001), 401-407. Google Scholar

[21]

X. Fan, Positive solutions to p(x)-Laplacian-Dirichlet problems with sign-changing nonlinearities, Glasg. Math. J., 52 (2010), 505-516. doi: 10.1017/S0017089510000388.  Google Scholar

[22]

X. Fan and D. Zhao, On the spaces Lp(x)(Ω) and Wm, p(x)(Ω), J. Math. Anal. Appl., 263 (2001), 424-446. doi: 10.1006/jmaa.2000.7617.  Google Scholar

[23]

X.-L. Fan and Q.-H. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Anal., 52 (2003), 1843-1852. doi: 10.1016/S0362-546X(02)00150-5.  Google Scholar

[24]

R. Filippucci, Nonexistence of positive weak solutions of elliptic inequalities, Nonlinear Anal., 70 (2009), 2903-2916. doi: 10.1016/j.na.2008.12.018.  Google Scholar

[25]

E. Galakhov, O. Salieva and L. Uvarova, Nonexistence results for some nonlinear elliptic and parabolic inequalities with functional parameters, Electron. J. Qual. Theory Differ. Equ., 85 (2015), 1-11.  Google Scholar

[26]

N. Ghoussoub and A. Moradifam, Bessel pairs and optimal Hardy and Hardy-Rellich inequalities, Math. Ann., 349 (2011), 1-57. doi: 10.1007/s00208-010-0510-x.  Google Scholar

[27]

P. Gwiazda, F. Z. Klawe and A. Świerczewska-Gwiazda, Thermo-visco-elasticity for NortonHoff-type models, Nonlinear Anal. Real World Appl., 26 (2015), 199-228. doi: 10.1016/j.nonrwa.2015.05.009.  Google Scholar

[28]

P. Gwiazda, P. Minakowski and A. Wróblewska-Kamińska, Elliptic problems in generalized Orlicz-Musielak spaces, Cent. Eur. J. Math., 10 (2012), 2019-2032. doi: 10.2478/s11533-012-0126-3.  Google Scholar

[29]

P. Gwiazda, A. Świerczewska-Gwiazda and A. Wróblewska, Monotonicity methods in generalized Orlicz spaces for a class of non-Newtonian fluids, Math. Methods Appl. Sci., 33 (2010), 125-137. doi: 10.1002/mma.1155.  Google Scholar

[30]

P. Harjulehto, P. Hästö and V. Latvala, Harnack's inequality for p(·)-harmonic functions with unbounded exponent p, J. Math. Anal. Appl., 352 (2009), 345-359. doi: 10.1016/j.jmaa.2008.05.090.  Google Scholar

[31]

P. Harjulehto, P. Hästö, Ú. V. Lê and M. Nuortio, Overview of differential equations with nonstandard growth, Nonlinear Anal., 72 (2010), 4551-4574. doi: 10.1016/j.na.2010.02.033.  Google Scholar

[32]

P. Harjulehto, J. Kinnunen and T. Lukkari, Unbounded supersolutions of nonlinear equations with nonstandard growth, Bound. Value Probl., 2007. Art. ID 48348.  Google Scholar

[33]

P. S. Iliaş, Existence and multiplicity of solutions of a p(x)-Laplacian equation in a bounded domain, Rev. Roumaine Math. Pures Appl., 52 (2007), 639-653.  Google Scholar

[34]

Y. Jiang and Y. Fu, On the eigenvalue of p(x)-laplace equation, arXiv: 1105.4225v1, 2011. Google Scholar

[35]

A. Kałamajska, K. Pietruska-Pałuba and I. Skrzypczak, Nonexistence results for differential inequalities involving A-Laplacian, Adv. Differential Equations, 17 (2012), 307-336.  Google Scholar

[36]

G. Karisti, E. Mitidieri and S. I. Pokhozhaev, Liouville theorems for quasilinear elliptic inequalities, Dokl. Akad. Nauk, 424 (2009), 741-747. doi: 10.1134/S1064562409010360.  Google Scholar

[37]

J. Liu, Positive solutions of the p(x)-Laplace equation with singular nonlinearity, Nonlinear Anal., 72 (2010), 4428-4437. doi: 10.1016/j.na.2010.02.018.  Google Scholar

[38]

M. Mihăilescu and D. Stancu-Dumitru, On an eigenvalue problem involving the p(x)-Laplace operator plus a non-local term, Differ. Equ. Appl., 1 (2009), 367-378. doi: 10.7153/dea-01-20.  Google Scholar

[39]

E. Mitidieri and S. I. Pokhozhaev, Absence of positive solutions for quasilinear elliptic problems in ${{\mathbb{R}}^{n}}$, Tr. Mat. Inst. Steklova, 227 (1999), 192-222.  Google Scholar

[40]

E. Mitidieri and S. I. Pokhozhaev, Some generalizations of Bernstein's theorem, Differ. Uravn., 38 (2002), 373-378. doi: 10.1023/A:1016066010721.  Google Scholar

[41]

P. Pucci and Q. Zhang, Existence of entire solutions for a class of variable exponent elliptic equations, J. Differential Equations, 257 (2014), 1529-1566. doi: 10.1016/j.jde.2014.05.023.  Google Scholar

[42]

K. Rajagopal and M. Růžička, On the modeling of electrorheological materials, Mech. Res. Commun., 1996,401-407. Google Scholar

[43]

M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory, Springer-Verlag, Berlin, 2000. Lecture Notes in Mathematics, 1748. doi: 10.1007/BFb0104029.  Google Scholar

[44]

J. Serrin, The Liouville theorem for homogeneous elliptic differential inequalities. Problems in mathematical analysis, 61, J. Math. Sci. (N. Y.), 179 (2011), 174-183. doi: 10.1007/s10958-011-0588-z.  Google Scholar

[45]

I. Skrzypczak, Hardy-type inequalities derived from p-harmonic problems, Nonlinear Anal., 93 (2013), 30-50. doi: 10.1016/j.na.2013.07.006.  Google Scholar

[46]

I. Skrzypczak, Hardy-Poincaré type inequalities derived from p-harmonic problems, In Calculus of variations and PDEs, Banach Center Publ. 101, pages 225-238. Polish Acad. Sci. Inst. Math. , Warsaw, 2014. doi: 10.4064/bc101-0-17.  Google Scholar

[47]

L. F. Wang, Liouville theorem for the variable exponent Laplacian, J. East China Norm. Univ. Natur. Sci. Ed., 1 (2009), 84-93.  Google Scholar

[48]

V. V. Zhikov, Meyer-type estimates for solving the nonlinear Stokes system, Differ. Uravn., 33 (1997), 107-114.  Google Scholar

[49]

V. V. Zhikov, On some variational problems, Russian J. Math. Phys., 5 (1997), 105-116.  Google Scholar

show all references

References:
[1]

E. Acerbi, I. Fonseca and G. Mingione, Existence and regularity for mixtures of micromagnetic materials, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462 (2006), 2225-2243. doi: 10.1098/rspa.2006.1655.  Google Scholar

[2]

E. Acerbi and G. Mingione, Regularity results for a class of functionals with non-standard growth, Arch. Ration. Mech. Anal., 156 (2001), 121-140. doi: 10.1007/s002050100117.  Google Scholar

[3]

E. Acerbi and G. Mingione, Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal., 164 (2002), 213-259. doi: 10.1007/s00205-002-0208-7.  Google Scholar

[4]

T. Adamowicz and P. Górka, The Liouville theorems for elliptic equations with nonstandard growth, Commun. Pure Appl. Anal., 14 (2015), 2377-2392. doi: 10.3934/cpaa.2015.14.2377.  Google Scholar

[5]

A. Baalal and A. Qabil, Liouville-type result for quasilinear elliptic problems with variable exponent, Int. J. Pure Appl. Math., 104 (2015), 57-68. Google Scholar

[6]

S. Barnás, Existence results for hemivariational inequality involving p(x)-Laplacian, Opuscula Math., 32 (2012), 439-454. doi: 10.7494/OpMath.2012.32.3.439.  Google Scholar

[7]

A. Blanchet, M. Bonforte, J. Dolbeault, G. Grillo and J.-L. Vázquez, Hardy-Poincaré inequalities and applications to nonlinear diffusions, C. R. Math. Acad. Sci. Paris, 344 (2007), 431-436. doi: 10.1016/j.crma.2007.01.011.  Google Scholar

[8]

B. Bojarski and P. Hałlasz, Pointwise inequalities for Sobolev functions and some applications, Studia Math., 106 (1993), 77-92.  Google Scholar

[9]

Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006), 1383-1406. doi: 10.1137/050624522.  Google Scholar

[10]

D. V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces. Foundations and Harmonic Analysis, Birkhäuser/Springer, Heidelberg, 2013. doi: 10.1007/978-3-0348-0548-3.  Google Scholar

[11]

L. D'Ambrosio, Liouville theorems for anisotropic quasilinear inequalities, Nonlinear Anal., 70 (2009), 2855-2869. doi: 10.1016/j.na.2008.12.028.  Google Scholar

[12]

L. D'Ambrosio and E. Mitidieri, A priori estimates, positivity results, and nonexistence theorems for quasilinear degenerate elliptic inequalities, Adv. Math., 224 (2010), 967-1020. doi: 10.1016/j.aim.2009.12.017.  Google Scholar

[13]

L. D'Ambrosio and E. Mitidieri, A priori estimates and reduction principles for quasilinear elliptic problems and applications, Adv. Differential Equations, 17 (2012), 935-1000.  Google Scholar

[14]

L. D'Ambrosio and E. Mitidieri, Liouville theorems for elliptic systems and applications, J. Math. Anal. Appl., 413 (2014), 121-138. doi: 10.1016/j.jmaa.2013.11.052.  Google Scholar

[15]

R. N. Dhara and A. Ka lamajska, On equivalent conditions for the validity of Poincaré inequality on weighted Sobolev space with applications to the solvability of degenerated PDEs involving p-Laplacian, J. Math. Anal. Appl., 432 (2015), 463-483. doi: 10.1016/j.jmaa.2015.06.068.  Google Scholar

[16]

L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev spaces with variable exponents, Springer, Heidelberg, 2011. Lecture Notes in Mathematics, 2017. Google Scholar

[17]

T.-L. Dinu, Entire solutions of multivalued nonlinear Schrödinger equations in Sobolev spaces with variable exponent, Nonlinear Anal., 65 (2006), 1414-1424. doi: 10.1016/j.na.2005.10.022.  Google Scholar

[18]

O. Došlý and R. Mařík, Nonexistence of positive solutions of PDE's with p-Laplacian, Acta Math. Hungar., 90 (2001), 89-107. doi: 10.1023/A:1006739909182.  Google Scholar

[19]

P. Drábek, A. Ka lamajska and I. Skrzypczak, Caccioppoli-type estimates and Hardy-type inequalities derived from degenerated p-harmonic problems, preprint, 2016. Google Scholar

[20]

X. Fan, On the positive solutions of p(x)-laplace equation, J. Gansu Educ. College, 15 (2001), 401-407. Google Scholar

[21]

X. Fan, Positive solutions to p(x)-Laplacian-Dirichlet problems with sign-changing nonlinearities, Glasg. Math. J., 52 (2010), 505-516. doi: 10.1017/S0017089510000388.  Google Scholar

[22]

X. Fan and D. Zhao, On the spaces Lp(x)(Ω) and Wm, p(x)(Ω), J. Math. Anal. Appl., 263 (2001), 424-446. doi: 10.1006/jmaa.2000.7617.  Google Scholar

[23]

X.-L. Fan and Q.-H. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Anal., 52 (2003), 1843-1852. doi: 10.1016/S0362-546X(02)00150-5.  Google Scholar

[24]

R. Filippucci, Nonexistence of positive weak solutions of elliptic inequalities, Nonlinear Anal., 70 (2009), 2903-2916. doi: 10.1016/j.na.2008.12.018.  Google Scholar

[25]

E. Galakhov, O. Salieva and L. Uvarova, Nonexistence results for some nonlinear elliptic and parabolic inequalities with functional parameters, Electron. J. Qual. Theory Differ. Equ., 85 (2015), 1-11.  Google Scholar

[26]

N. Ghoussoub and A. Moradifam, Bessel pairs and optimal Hardy and Hardy-Rellich inequalities, Math. Ann., 349 (2011), 1-57. doi: 10.1007/s00208-010-0510-x.  Google Scholar

[27]

P. Gwiazda, F. Z. Klawe and A. Świerczewska-Gwiazda, Thermo-visco-elasticity for NortonHoff-type models, Nonlinear Anal. Real World Appl., 26 (2015), 199-228. doi: 10.1016/j.nonrwa.2015.05.009.  Google Scholar

[28]

P. Gwiazda, P. Minakowski and A. Wróblewska-Kamińska, Elliptic problems in generalized Orlicz-Musielak spaces, Cent. Eur. J. Math., 10 (2012), 2019-2032. doi: 10.2478/s11533-012-0126-3.  Google Scholar

[29]

P. Gwiazda, A. Świerczewska-Gwiazda and A. Wróblewska, Monotonicity methods in generalized Orlicz spaces for a class of non-Newtonian fluids, Math. Methods Appl. Sci., 33 (2010), 125-137. doi: 10.1002/mma.1155.  Google Scholar

[30]

P. Harjulehto, P. Hästö and V. Latvala, Harnack's inequality for p(·)-harmonic functions with unbounded exponent p, J. Math. Anal. Appl., 352 (2009), 345-359. doi: 10.1016/j.jmaa.2008.05.090.  Google Scholar

[31]

P. Harjulehto, P. Hästö, Ú. V. Lê and M. Nuortio, Overview of differential equations with nonstandard growth, Nonlinear Anal., 72 (2010), 4551-4574. doi: 10.1016/j.na.2010.02.033.  Google Scholar

[32]

P. Harjulehto, J. Kinnunen and T. Lukkari, Unbounded supersolutions of nonlinear equations with nonstandard growth, Bound. Value Probl., 2007. Art. ID 48348.  Google Scholar

[33]

P. S. Iliaş, Existence and multiplicity of solutions of a p(x)-Laplacian equation in a bounded domain, Rev. Roumaine Math. Pures Appl., 52 (2007), 639-653.  Google Scholar

[34]

Y. Jiang and Y. Fu, On the eigenvalue of p(x)-laplace equation, arXiv: 1105.4225v1, 2011. Google Scholar

[35]

A. Kałamajska, K. Pietruska-Pałuba and I. Skrzypczak, Nonexistence results for differential inequalities involving A-Laplacian, Adv. Differential Equations, 17 (2012), 307-336.  Google Scholar

[36]

G. Karisti, E. Mitidieri and S. I. Pokhozhaev, Liouville theorems for quasilinear elliptic inequalities, Dokl. Akad. Nauk, 424 (2009), 741-747. doi: 10.1134/S1064562409010360.  Google Scholar

[37]

J. Liu, Positive solutions of the p(x)-Laplace equation with singular nonlinearity, Nonlinear Anal., 72 (2010), 4428-4437. doi: 10.1016/j.na.2010.02.018.  Google Scholar

[38]

M. Mihăilescu and D. Stancu-Dumitru, On an eigenvalue problem involving the p(x)-Laplace operator plus a non-local term, Differ. Equ. Appl., 1 (2009), 367-378. doi: 10.7153/dea-01-20.  Google Scholar

[39]

E. Mitidieri and S. I. Pokhozhaev, Absence of positive solutions for quasilinear elliptic problems in ${{\mathbb{R}}^{n}}$, Tr. Mat. Inst. Steklova, 227 (1999), 192-222.  Google Scholar

[40]

E. Mitidieri and S. I. Pokhozhaev, Some generalizations of Bernstein's theorem, Differ. Uravn., 38 (2002), 373-378. doi: 10.1023/A:1016066010721.  Google Scholar

[41]

P. Pucci and Q. Zhang, Existence of entire solutions for a class of variable exponent elliptic equations, J. Differential Equations, 257 (2014), 1529-1566. doi: 10.1016/j.jde.2014.05.023.  Google Scholar

[42]

K. Rajagopal and M. Růžička, On the modeling of electrorheological materials, Mech. Res. Commun., 1996,401-407. Google Scholar

[43]

M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory, Springer-Verlag, Berlin, 2000. Lecture Notes in Mathematics, 1748. doi: 10.1007/BFb0104029.  Google Scholar

[44]

J. Serrin, The Liouville theorem for homogeneous elliptic differential inequalities. Problems in mathematical analysis, 61, J. Math. Sci. (N. Y.), 179 (2011), 174-183. doi: 10.1007/s10958-011-0588-z.  Google Scholar

[45]

I. Skrzypczak, Hardy-type inequalities derived from p-harmonic problems, Nonlinear Anal., 93 (2013), 30-50. doi: 10.1016/j.na.2013.07.006.  Google Scholar

[46]

I. Skrzypczak, Hardy-Poincaré type inequalities derived from p-harmonic problems, In Calculus of variations and PDEs, Banach Center Publ. 101, pages 225-238. Polish Acad. Sci. Inst. Math. , Warsaw, 2014. doi: 10.4064/bc101-0-17.  Google Scholar

[47]

L. F. Wang, Liouville theorem for the variable exponent Laplacian, J. East China Norm. Univ. Natur. Sci. Ed., 1 (2009), 84-93.  Google Scholar

[48]

V. V. Zhikov, Meyer-type estimates for solving the nonlinear Stokes system, Differ. Uravn., 33 (1997), 107-114.  Google Scholar

[49]

V. V. Zhikov, On some variational problems, Russian J. Math. Phys., 5 (1997), 105-116.  Google Scholar

[1]

Meiqiang Feng, Yichen Zhang. Positive solutions of singular multiparameter p-Laplacian elliptic systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021083

[2]

Shuang Wang, Dingbian Qian. Periodic solutions of p-Laplacian equations via rotation numbers. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021060

[3]

Said Taarabti. Positive solutions for the $ p(x)- $Laplacian : Application of the Nehari method. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021029

[4]

Alfonso Castro, Jorge Cossio, Sigifredo Herrón, Carlos Vélez. Infinitely many radial solutions for a $ p $-Laplacian problem with indefinite weight. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021058

[5]

Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3211-3240. doi: 10.3934/dcds.2020403

[6]

Xuping Zhang. Pullback random attractors for fractional stochastic $ p $-Laplacian equation with delay and multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021107

[7]

Anhui Gu. Weak pullback mean random attractors for non-autonomous $ p $-Laplacian equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3863-3878. doi: 10.3934/dcdsb.2020266

[8]

Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, , () : -. doi: 10.3934/era.2021016

[9]

Giulio Ciraolo, Antonio Greco. An overdetermined problem associated to the Finsler Laplacian. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1025-1038. doi: 10.3934/cpaa.2021004

[10]

Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3021-3029. doi: 10.3934/dcds.2020395

[11]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[12]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[13]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[14]

Wei Xi Li, Chao Jiang Xu. Subellipticity of some complex vector fields related to the Witten Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021047

[15]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[16]

Shoichi Hasegawa, Norihisa Ikoma, Tatsuki Kawakami. On weak solutions to a fractional Hardy–Hénon equation: Part I: Nonexistence. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021033

[17]

Amira Khelifa, Yacine Halim. Global behavior of P-dimensional difference equations system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021029

[18]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[19]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[20]

Kazeem Olalekan Aremu, Chinedu Izuchukwu, Grace Nnenanya Ogwo, Oluwatosin Temitope Mewomo. Multi-step iterative algorithm for minimization and fixed point problems in p-uniformly convex metric spaces. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2161-2180. doi: 10.3934/jimo.2020063

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (42)
  • HTML views (67)
  • Cited by (3)

Other articles
by authors

[Back to Top]