\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Liouville theorems for elliptic problems in variable exponent spaces

Abstract Full Text(HTML) Related Papers Cited by
  • We investigate nonexistence of nonnegative solutions to a partial differential inequality involving the p(x){Laplacian of the form

    $- {\Delta _{p(x)}}u \geqslant \Phi (x,u(x),\nabla u(x))$

    in ${\mathbb{R}^n}$, as well as in outer domain $\Omega \subseteq {\mathbb{R}^n}$, where Φ(x; u; ∇u) is a locally integrable Carathéodory’s function. We assume that Φ(x; u; ∇u) ≥ 0 or compatible with p and u. Growth conditions on u and p lead to Liouville-type results for u.

    Mathematics Subject Classification: 26D10, 35J60, 35J91.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1]

    E. Acerbi, I. Fonseca and G. Mingione, Existence and regularity for mixtures of micromagnetic materials, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462 (2006), 2225-2243.

    doi: 10.1098/rspa.2006.1655.

    [2]

    E. Acerbi and G. Mingione, Regularity results for a class of functionals with non-standard growth, Arch. Ration. Mech. Anal., 156 (2001), 121-140.

    doi: 10.1007/s002050100117.

    [3]

    E. Acerbi and G. Mingione, Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal., 164 (2002), 213-259.

    doi: 10.1007/s00205-002-0208-7.

    [4]

    T. Adamowicz and P. Górka, The Liouville theorems for elliptic equations with nonstandard growth, Commun. Pure Appl. Anal., 14 (2015), 2377-2392.

    doi: 10.3934/cpaa.2015.14.2377.

    [5]

    A. Baalal and A. Qabil, Liouville-type result for quasilinear elliptic problems with variable exponent, Int. J. Pure Appl. Math., 104 (2015), 57-68.

    [6]

    S. Barnás, Existence results for hemivariational inequality involving p(x)-Laplacian, Opuscula Math., 32 (2012), 439-454.

    doi: 10.7494/OpMath.2012.32.3.439.

    [7]

    A. Blanchet, M. Bonforte, J. Dolbeault, G. Grillo and J.-L. Vázquez, Hardy-Poincaré inequalities and applications to nonlinear diffusions, C. R. Math. Acad. Sci. Paris, 344 (2007), 431-436.

    doi: 10.1016/j.crma.2007.01.011.

    [8]

    B. Bojarski and P. Hałlasz, Pointwise inequalities for Sobolev functions and some applications, Studia Math., 106 (1993), 77-92.

    [9]

    Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006), 1383-1406.

    doi: 10.1137/050624522.

    [10] D. V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces. Foundations and Harmonic Analysis, Birkhäuser/Springer, Heidelberg, 2013. doi: 10.1007/978-3-0348-0548-3.
    [11]

    L. D'Ambrosio, Liouville theorems for anisotropic quasilinear inequalities, Nonlinear Anal., 70 (2009), 2855-2869.

    doi: 10.1016/j.na.2008.12.028.

    [12]

    L. D'Ambrosio and E. Mitidieri, A priori estimates, positivity results, and nonexistence theorems for quasilinear degenerate elliptic inequalities, Adv. Math., 224 (2010), 967-1020.

    doi: 10.1016/j.aim.2009.12.017.

    [13]

    L. D'Ambrosio and E. Mitidieri, A priori estimates and reduction principles for quasilinear elliptic problems and applications, Adv. Differential Equations, 17 (2012), 935-1000.

    [14]

    L. D'Ambrosio and E. Mitidieri, Liouville theorems for elliptic systems and applications, J. Math. Anal. Appl., 413 (2014), 121-138.

    doi: 10.1016/j.jmaa.2013.11.052.

    [15]

    R. N. Dhara and A. Ka lamajska, On equivalent conditions for the validity of Poincaré inequality on weighted Sobolev space with applications to the solvability of degenerated PDEs involving p-Laplacian, J. Math. Anal. Appl., 432 (2015), 463-483.

    doi: 10.1016/j.jmaa.2015.06.068.

    [16] L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev spaces with variable exponents, Springer, Heidelberg, 2011. Lecture Notes in Mathematics, 2017.
    [17]

    T.-L. Dinu, Entire solutions of multivalued nonlinear Schrödinger equations in Sobolev spaces with variable exponent, Nonlinear Anal., 65 (2006), 1414-1424.

    doi: 10.1016/j.na.2005.10.022.

    [18]

    O. Došlý and R. Mařík, Nonexistence of positive solutions of PDE's with p-Laplacian, Acta Math. Hungar., 90 (2001), 89-107.

    doi: 10.1023/A:1006739909182.

    [19] P. Drábek, A. Ka lamajska and I. Skrzypczak, Caccioppoli-type estimates and Hardy-type inequalities derived from degenerated p-harmonic problems, preprint, 2016.
    [20]

    X. Fan, On the positive solutions of p(x)-laplace equation, J. Gansu Educ. College, 15 (2001), 401-407.

    [21]

    X. Fan, Positive solutions to p(x)-Laplacian-Dirichlet problems with sign-changing nonlinearities, Glasg. Math. J., 52 (2010), 505-516.

    doi: 10.1017/S0017089510000388.

    [22]

    X. Fan and D. Zhao, On the spaces Lp(x)(Ω) and Wm, p(x)(Ω), J. Math. Anal. Appl., 263 (2001), 424-446.

    doi: 10.1006/jmaa.2000.7617.

    [23]

    X.-L. Fan and Q.-H. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Anal., 52 (2003), 1843-1852.

    doi: 10.1016/S0362-546X(02)00150-5.

    [24]

    R. Filippucci, Nonexistence of positive weak solutions of elliptic inequalities, Nonlinear Anal., 70 (2009), 2903-2916.

    doi: 10.1016/j.na.2008.12.018.

    [25]

    E. Galakhov, O. Salieva and L. Uvarova, Nonexistence results for some nonlinear elliptic and parabolic inequalities with functional parameters, Electron. J. Qual. Theory Differ. Equ., 85 (2015), 1-11.

    [26]

    N. Ghoussoub and A. Moradifam, Bessel pairs and optimal Hardy and Hardy-Rellich inequalities, Math. Ann., 349 (2011), 1-57.

    doi: 10.1007/s00208-010-0510-x.

    [27]

    P. Gwiazda, F. Z. Klawe and A. Świerczewska-Gwiazda, Thermo-visco-elasticity for NortonHoff-type models, Nonlinear Anal. Real World Appl., 26 (2015), 199-228.

    doi: 10.1016/j.nonrwa.2015.05.009.

    [28]

    P. Gwiazda, P. Minakowski and A. Wróblewska-Kamińska, Elliptic problems in generalized Orlicz-Musielak spaces, Cent. Eur. J. Math., 10 (2012), 2019-2032.

    doi: 10.2478/s11533-012-0126-3.

    [29]

    P. Gwiazda, A. Świerczewska-Gwiazda and A. Wróblewska, Monotonicity methods in generalized Orlicz spaces for a class of non-Newtonian fluids, Math. Methods Appl. Sci., 33 (2010), 125-137.

    doi: 10.1002/mma.1155.

    [30]

    P. Harjulehto, P. Hästö and V. Latvala, Harnack's inequality for p(·)-harmonic functions with unbounded exponent p, J. Math. Anal. Appl., 352 (2009), 345-359.

    doi: 10.1016/j.jmaa.2008.05.090.

    [31]

    P. Harjulehto, P. Hästö, Ú. V. Lê and M. Nuortio, Overview of differential equations with nonstandard growth, Nonlinear Anal., 72 (2010), 4551-4574.

    doi: 10.1016/j.na.2010.02.033.

    [32]

    P. Harjulehto, J. Kinnunen and T. Lukkari, Unbounded supersolutions of nonlinear equations with nonstandard growth, Bound. Value Probl., 2007. Art. ID 48348.

    [33]

    P. S. Iliaş, Existence and multiplicity of solutions of a p(x)-Laplacian equation in a bounded domain, Rev. Roumaine Math. Pures Appl., 52 (2007), 639-653.

    [34] Y. Jiang and Y. Fu, On the eigenvalue of p(x)-laplace equation, arXiv: 1105.4225v1, 2011.
    [35]

    A. Kałamajska, K. Pietruska-Pałuba and I. Skrzypczak, Nonexistence results for differential inequalities involving A-Laplacian, Adv. Differential Equations, 17 (2012), 307-336.

    [36]

    G. Karisti, E. Mitidieri and S. I. Pokhozhaev, Liouville theorems for quasilinear elliptic inequalities, Dokl. Akad. Nauk, 424 (2009), 741-747.

    doi: 10.1134/S1064562409010360.

    [37]

    J. Liu, Positive solutions of the p(x)-Laplace equation with singular nonlinearity, Nonlinear Anal., 72 (2010), 4428-4437.

    doi: 10.1016/j.na.2010.02.018.

    [38]

    M. Mihăilescu and D. Stancu-Dumitru, On an eigenvalue problem involving the p(x)-Laplace operator plus a non-local term, Differ. Equ. Appl., 1 (2009), 367-378.

    doi: 10.7153/dea-01-20.

    [39]

    E. Mitidieri and S. I. Pokhozhaev, Absence of positive solutions for quasilinear elliptic problems in ${{\mathbb{R}}^{n}}$, Tr. Mat. Inst. Steklova, 227 (1999), 192-222.

    [40]

    E. Mitidieri and S. I. Pokhozhaev, Some generalizations of Bernstein's theorem, Differ. Uravn., 38 (2002), 373-378.

    doi: 10.1023/A:1016066010721.

    [41]

    P. Pucci and Q. Zhang, Existence of entire solutions for a class of variable exponent elliptic equations, J. Differential Equations, 257 (2014), 1529-1566.

    doi: 10.1016/j.jde.2014.05.023.

    [42]

    K. Rajagopal and M. Růžička, On the modeling of electrorheological materials, Mech. Res. Commun., 1996,401-407.

    [43] M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory, Springer-Verlag, Berlin, 2000. Lecture Notes in Mathematics, 1748. doi: 10.1007/BFb0104029.
    [44]

    J. Serrin, The Liouville theorem for homogeneous elliptic differential inequalities. Problems in mathematical analysis, 61, J. Math. Sci. (N. Y.), 179 (2011), 174-183.

    doi: 10.1007/s10958-011-0588-z.

    [45]

    I. Skrzypczak, Hardy-type inequalities derived from p-harmonic problems, Nonlinear Anal., 93 (2013), 30-50.

    doi: 10.1016/j.na.2013.07.006.

    [46] I. Skrzypczak, Hardy-Poincaré type inequalities derived from p-harmonic problems, In Calculus of variations and PDEs, Banach Center Publ. 101, pages 225-238. Polish Acad. Sci. Inst. Math. , Warsaw, 2014. doi: 10.4064/bc101-0-17.
    [47]

    L. F. Wang, Liouville theorem for the variable exponent Laplacian, J. East China Norm. Univ. Natur. Sci. Ed., 1 (2009), 84-93.

    [48]

    V. V. Zhikov, Meyer-type estimates for solving the nonlinear Stokes system, Differ. Uravn., 33 (1997), 107-114.

    [49]

    V. V. Zhikov, On some variational problems, Russian J. Math. Phys., 5 (1997), 105-116.

  • 加载中
SHARE

Article Metrics

HTML views(359) PDF downloads(82) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return