March  2017, 16(2): 557-590. doi: 10.3934/cpaa.2017028

Global dynamics of solutions with group invariance for the nonlinear schrödinger equation

Department of Mathematics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan

Received  July 2016 Revised  November 2016 Published  January 2017

Fund Project: The author is supported by JSPS Research Fellow 15J02570.

We consider the focusing mass-supercritical and energy-subcritical nonlinear Schrödinger equation (NLS). We are interested in the global behavior of the solutions to (NLS) with group invariance. By the group invariance, we can determine the global behavior of the solutions above the ground state standing waves.

Citation: Takahisa Inui. Global dynamics of solutions with group invariance for the nonlinear schrödinger equation. Communications on Pure & Applied Analysis, 2017, 16 (2) : 557-590. doi: 10.3934/cpaa.2017028
References:
[1]

T. Akahori and H. Nawa, Blowup and scattering problems for the nonlinear Schrödinger equations, Kyoto J. Math., 53 (2013), 629-672. doi: 10.1215/21562261-2265914.  Google Scholar

[2]

V. Banica and N. Visciglia, Scattering for NLS with a delta potential, J. Differential Equations, 260 (2016), 4410-4439. doi: 10.1016/j.jde.2015.11.016.  Google Scholar

[3]

T. Bartsch and Z. Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on ${\mathbb{R}^N}$, Comm. Partial Differential Equations, 20 (1995), 1725-1741. doi: 10.1080/03605309508821149.  Google Scholar

[4]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations. Ⅰ. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345. doi: 10.1007/BF00250555.  Google Scholar

[5]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations. Ⅱ. Existence of infinitely many solutions, Arch. Rational Mech. Anal., 82 (1983), 347-375. doi: 10.1007/BF00250556.  Google Scholar

[6]

H. Brézis and E. H. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490. doi: 10.2307/2044999.  Google Scholar

[7]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, vol. 10, American Mathematical Society, Courant Institute of Mathematical Sciences, 2003. doi: 10.1090/cln/010.  Google Scholar

[8]

T. Cazenave and F. B. Weissler, Rapidly decaying solutions of the nonlinear Schrödinger equation, Comm. Math. Phys., 147 (1992), 75-100.  Google Scholar

[9]

B. Dodson, Global well -posedness and scattering for the focusing, energy -critical nonlinear Schrödinger problem in dimension d = 4 for initial data below a ground state threshold, preprint, arXiv: 1409.1950. Google Scholar

[10]

B. Dodson, Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the ground state, Adv. Math., 285 (2015), 1589-1618. doi: 10.1016/j.aim.2015.04.030.  Google Scholar

[11]

D. Du, Y. Wu and K. Zhang, On blow-up criterion for the nonlinear Schrödinger equation, Discrete Contin. Dyn. Syst., 36 (2016), 3639-3650. doi: 10.3934/dcds.2016.36.3639.  Google Scholar

[12]

T. Duyckaerts, J. Holmer and S. Roudenko, Scattering for the non-radial 3D cubic nonlinear Schrödinger equation, Math. Res. Lett., 15 (2008), 1233-1250. doi: 10.4310/MRL.2008.v15.n6.a13.  Google Scholar

[13]

T. Duyckaerts, H. Jia, C. E. Kenig, and F. Merle, Soliton resolution along a sequence of times for the focusing energy critical wave equation, preprint, arXiv: 1601.01871. Google Scholar

[14]

T. Duyckaerts, C. E. Kenig and F. Merle, Classification of radial solutions of the focusing, energy-critical wave equation, Camb. J. Math., 1 (2013), 75-144. doi: 10.4310/CJM.2013.v1.n1.a3.  Google Scholar

[15]

T. Duyckaerts and F. Merle, Dynamic of threshold solutions for energy-critical NLS, Geom. Funct. Anal., 18 (2009), 1787-1840. doi: 10.1007/s00039-009-0707-x.  Google Scholar

[16]

T. Duyckaerts and S. Roudenko, Threshold solutions for the focusing 3D cubic Schrödinger equation, Rev. Mat. Iberoam., 26 (2010), 1-56. doi: 10.4171/RMI/592.  Google Scholar

[17]

T. Duyckaerts and S. Roudenko, Going beyond the threshold: scattering and blow-up in the focusing NLS equation, Comm. Math. Phys., 334 (2015), 1573-1615. doi: 10.1007/s00220-014-2202-y.  Google Scholar

[18]

D. Fang, J. Xie and T. Cazenave, Scattering for the focusing energy-subcritical nonlinear Schrödinger equation, Sci. China Math., 54 (2011), 2037-2062. doi: 10.1007/s11425-011-4283-9.  Google Scholar

[19]

J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case, J. Funct. Anal., 32 (1979), 1-32. doi: 10.1016/0022-1236(79)90077-6.  Google Scholar

[20]

R. T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys., 18 (1977), 1794-1797.  Google Scholar

[21]

J. Holmer and S. Roudenko, A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation, Comm. Math. Phys., 282 (2008), 435-467. doi: 10.1007/s00220-008-0529-y.  Google Scholar

[22]

J. Holmer and S. Roudenko, Divergence of infinite-variance nonradial solutions to the 3D NLS equation, Comm. Partial Differential Equations, 35 (2010), 878-905. doi: 10.1080/03605301003646713.  Google Scholar

[23]

S. Ibrahim, N. Masmoudi and K. Nakanishi, Scattering threshold for the focusing nonlinear Klein-Gordon equation, Anal. PDE, 4 (2011), 405-460. doi: 10.2140/apde.2011.4.405.  Google Scholar

[24]

S. Ibrahim, N. Masmoudi and K. Nakanishi, Threshold solutions in the case of mass-shift for the critical Klein-Gordon equation, Trans. Amer. Math. Soc., 366 (2014), 5653-5669. doi: 10.1090/S0002-9947-2014-05852-2.  Google Scholar

[25]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energycritical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675. doi: 10.1007/s00222-006-0011-4.  Google Scholar

[26]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation, Acta Math., 201 (2008), 147-212. doi: 10.1007/s11511-008-0031-6.  Google Scholar

[27]

R. Killip, S. Masaki, J. Murphy and M. Visan, Large data mass-subcritical NLS: critical weighted bounds imply scattering, preprint, arXiv: 1606.01512. Google Scholar

[28]

R. Killip, B. Stovall and M. Visan, Scattering for the cubic Klein-Gordon equation in two space dimensions, Trans. Amer. Math. Soc., 364 (2012), 1571-1631. doi: 10.1090/S0002-9947-2011-05536-4.  Google Scholar

[29]

R. Killip, T. Tao and M. Visan, The cubic nonlinear Schrödinger equation in two dimensions with radial data, J. Eur. Math. Soc., 11 (2009), 1203-1258. doi: 10.4171/JEMS/180.  Google Scholar

[30]

R. Killip and M. Visan, The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher, Amer. J. Math., 132 (2010), 361-424. doi: 10.1353/ajm.0.0107.  Google Scholar

[31]

R. Killip, M. Visan and X. Zhang, The mass-critical nonlinear Schrödinger equation with radial data in dimensions three and higher, Anal. PDE, 1 (2008), 229-266. doi: 10.2140/apde.2008.1.229.  Google Scholar

[32]

M. K. Kwong, Uniqueness of positive solutions of ∆u -u + up = 0 in ${\mathbb{R}^N}$, Arch. Rational Mech. Anal., 105 (1989), 243-266. doi: 10.1007/BF00251502.  Google Scholar

[33]

D. Li and X. Zhang, Dynamics for the energy critical nonlinear Schrödinger equation in high dimensions, J. Funct. Anal., 256 (2009), 1928-1961. doi: 10.1016/j.jfa.2008.12.007.  Google Scholar

[34]

E. H. Lieb and M. Loss, Analysis, Second edition, Graduate Studies in Mathematics, 14. American Mathematical Society, Providence, RI, 2001. xxii+346 pp. doi: 10.1090/gsm/014.  Google Scholar

[35]

F. Linares and G. Ponce, Introduction to Nonlinear Dispersive Equations, Second edition, Universitext. Springer, New York, 2015. xiv+301 pp. doi: 10.1007/978-1-4939-2181-2.  Google Scholar

[36]

Y. Martel, Blow-up for the nonlinear Schrödinger equation in nonisotropic spaces, Nonlinear Anal., 28 (1997), 1903-1908. doi: 10.1016/S0362-546X(96)00036-3.  Google Scholar

[37]

Y. Martel and P. Raphaël, Strongly interacting blow up bubbles for the mass critical NLS, preprint, arXiv: 1512.00900. Google Scholar

[38]

J. L. Marzuola and M. E. Taylor, Higher dimensional vortex standing waves for nonlinear Schrödinger equations, Comm. Partial Differential Equations, 41 (2016), 398-446. doi: 10.1080/03605302.2015.1127966.  Google Scholar

[39]

S. Masaki, A sharp scattering condition for focusing mass-subcritical nonlinear Schrödinger equation, Commun. Pure Appl. Anal., 14 (2015), 1481-1531. doi: 10.3934/cpaa.2015.14.1481.  Google Scholar

[40]

S. Masaki, Two minimization problems on non-scattering solutions to mass-subcritical nonlinear Schrödinger equation, preprint, arXiv: 1605.09234. Google Scholar

[41]

K. Nakanishi and T. Roy, Global dynamics above the ground state for the energy-critical Schrödinger equation with radial data, Commun. Pure Appl. Anal., 15 (2016), 2023-2058. doi: 10.3934/cpaa.2016026.  Google Scholar

[42]

K. Nakanishi and W. Schlag, Global dynamics above the ground state energy for the cubic NLS equation in 3D, Calc. Var. Partial Differential Equations, 44 (2012), 1-45. doi: 10.1007/s00526-011-0424-9.  Google Scholar

[43]

K. Nakanishi and W. Schlag, Global dynamics above the ground state for the nonlinear Klein-Gordon equation without a radial assumption, Arch. Ration. Mech. Anal., 203 (2012), 809-851. doi: 10.1007/s00205-011-0462-7.  Google Scholar

[44]

T. Ogawa and Y. Tsutsumi, Blow-up of H1 solution for the nonlinear Schrödinger equation, J. Diff. Eq., 92, (1991), 317-330. doi: 10.1016/0022-0396(91)90052-B.  Google Scholar

[45]

Walter A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977), 149-162.  Google Scholar

[46]

W. A. Strauss, Nonlinear scattering theory at low energy, J. Funct. Anal., 41 (1981), 110-133. doi: 10.1016/0022-1236(81)90063-X.  Google Scholar

[47]

W. A. Strauss, Nonlinear scattering theory at low energy: sequel, J. Funct. Anal., 43 (1981), 281-293. doi: 10.1016/0022-1236(81)90019-7.  Google Scholar

[48]

T. Tao, Nonlinear Dispersive Equations. Local and Global Analysis, CBMS Regional Conference Series in Mathematics, 106. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2006. xvi+373 pp. doi: 10.1090/cbms/106.  Google Scholar

show all references

References:
[1]

T. Akahori and H. Nawa, Blowup and scattering problems for the nonlinear Schrödinger equations, Kyoto J. Math., 53 (2013), 629-672. doi: 10.1215/21562261-2265914.  Google Scholar

[2]

V. Banica and N. Visciglia, Scattering for NLS with a delta potential, J. Differential Equations, 260 (2016), 4410-4439. doi: 10.1016/j.jde.2015.11.016.  Google Scholar

[3]

T. Bartsch and Z. Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on ${\mathbb{R}^N}$, Comm. Partial Differential Equations, 20 (1995), 1725-1741. doi: 10.1080/03605309508821149.  Google Scholar

[4]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations. Ⅰ. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345. doi: 10.1007/BF00250555.  Google Scholar

[5]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations. Ⅱ. Existence of infinitely many solutions, Arch. Rational Mech. Anal., 82 (1983), 347-375. doi: 10.1007/BF00250556.  Google Scholar

[6]

H. Brézis and E. H. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490. doi: 10.2307/2044999.  Google Scholar

[7]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, vol. 10, American Mathematical Society, Courant Institute of Mathematical Sciences, 2003. doi: 10.1090/cln/010.  Google Scholar

[8]

T. Cazenave and F. B. Weissler, Rapidly decaying solutions of the nonlinear Schrödinger equation, Comm. Math. Phys., 147 (1992), 75-100.  Google Scholar

[9]

B. Dodson, Global well -posedness and scattering for the focusing, energy -critical nonlinear Schrödinger problem in dimension d = 4 for initial data below a ground state threshold, preprint, arXiv: 1409.1950. Google Scholar

[10]

B. Dodson, Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the ground state, Adv. Math., 285 (2015), 1589-1618. doi: 10.1016/j.aim.2015.04.030.  Google Scholar

[11]

D. Du, Y. Wu and K. Zhang, On blow-up criterion for the nonlinear Schrödinger equation, Discrete Contin. Dyn. Syst., 36 (2016), 3639-3650. doi: 10.3934/dcds.2016.36.3639.  Google Scholar

[12]

T. Duyckaerts, J. Holmer and S. Roudenko, Scattering for the non-radial 3D cubic nonlinear Schrödinger equation, Math. Res. Lett., 15 (2008), 1233-1250. doi: 10.4310/MRL.2008.v15.n6.a13.  Google Scholar

[13]

T. Duyckaerts, H. Jia, C. E. Kenig, and F. Merle, Soliton resolution along a sequence of times for the focusing energy critical wave equation, preprint, arXiv: 1601.01871. Google Scholar

[14]

T. Duyckaerts, C. E. Kenig and F. Merle, Classification of radial solutions of the focusing, energy-critical wave equation, Camb. J. Math., 1 (2013), 75-144. doi: 10.4310/CJM.2013.v1.n1.a3.  Google Scholar

[15]

T. Duyckaerts and F. Merle, Dynamic of threshold solutions for energy-critical NLS, Geom. Funct. Anal., 18 (2009), 1787-1840. doi: 10.1007/s00039-009-0707-x.  Google Scholar

[16]

T. Duyckaerts and S. Roudenko, Threshold solutions for the focusing 3D cubic Schrödinger equation, Rev. Mat. Iberoam., 26 (2010), 1-56. doi: 10.4171/RMI/592.  Google Scholar

[17]

T. Duyckaerts and S. Roudenko, Going beyond the threshold: scattering and blow-up in the focusing NLS equation, Comm. Math. Phys., 334 (2015), 1573-1615. doi: 10.1007/s00220-014-2202-y.  Google Scholar

[18]

D. Fang, J. Xie and T. Cazenave, Scattering for the focusing energy-subcritical nonlinear Schrödinger equation, Sci. China Math., 54 (2011), 2037-2062. doi: 10.1007/s11425-011-4283-9.  Google Scholar

[19]

J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case, J. Funct. Anal., 32 (1979), 1-32. doi: 10.1016/0022-1236(79)90077-6.  Google Scholar

[20]

R. T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys., 18 (1977), 1794-1797.  Google Scholar

[21]

J. Holmer and S. Roudenko, A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation, Comm. Math. Phys., 282 (2008), 435-467. doi: 10.1007/s00220-008-0529-y.  Google Scholar

[22]

J. Holmer and S. Roudenko, Divergence of infinite-variance nonradial solutions to the 3D NLS equation, Comm. Partial Differential Equations, 35 (2010), 878-905. doi: 10.1080/03605301003646713.  Google Scholar

[23]

S. Ibrahim, N. Masmoudi and K. Nakanishi, Scattering threshold for the focusing nonlinear Klein-Gordon equation, Anal. PDE, 4 (2011), 405-460. doi: 10.2140/apde.2011.4.405.  Google Scholar

[24]

S. Ibrahim, N. Masmoudi and K. Nakanishi, Threshold solutions in the case of mass-shift for the critical Klein-Gordon equation, Trans. Amer. Math. Soc., 366 (2014), 5653-5669. doi: 10.1090/S0002-9947-2014-05852-2.  Google Scholar

[25]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energycritical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675. doi: 10.1007/s00222-006-0011-4.  Google Scholar

[26]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation, Acta Math., 201 (2008), 147-212. doi: 10.1007/s11511-008-0031-6.  Google Scholar

[27]

R. Killip, S. Masaki, J. Murphy and M. Visan, Large data mass-subcritical NLS: critical weighted bounds imply scattering, preprint, arXiv: 1606.01512. Google Scholar

[28]

R. Killip, B. Stovall and M. Visan, Scattering for the cubic Klein-Gordon equation in two space dimensions, Trans. Amer. Math. Soc., 364 (2012), 1571-1631. doi: 10.1090/S0002-9947-2011-05536-4.  Google Scholar

[29]

R. Killip, T. Tao and M. Visan, The cubic nonlinear Schrödinger equation in two dimensions with radial data, J. Eur. Math. Soc., 11 (2009), 1203-1258. doi: 10.4171/JEMS/180.  Google Scholar

[30]

R. Killip and M. Visan, The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher, Amer. J. Math., 132 (2010), 361-424. doi: 10.1353/ajm.0.0107.  Google Scholar

[31]

R. Killip, M. Visan and X. Zhang, The mass-critical nonlinear Schrödinger equation with radial data in dimensions three and higher, Anal. PDE, 1 (2008), 229-266. doi: 10.2140/apde.2008.1.229.  Google Scholar

[32]

M. K. Kwong, Uniqueness of positive solutions of ∆u -u + up = 0 in ${\mathbb{R}^N}$, Arch. Rational Mech. Anal., 105 (1989), 243-266. doi: 10.1007/BF00251502.  Google Scholar

[33]

D. Li and X. Zhang, Dynamics for the energy critical nonlinear Schrödinger equation in high dimensions, J. Funct. Anal., 256 (2009), 1928-1961. doi: 10.1016/j.jfa.2008.12.007.  Google Scholar

[34]

E. H. Lieb and M. Loss, Analysis, Second edition, Graduate Studies in Mathematics, 14. American Mathematical Society, Providence, RI, 2001. xxii+346 pp. doi: 10.1090/gsm/014.  Google Scholar

[35]

F. Linares and G. Ponce, Introduction to Nonlinear Dispersive Equations, Second edition, Universitext. Springer, New York, 2015. xiv+301 pp. doi: 10.1007/978-1-4939-2181-2.  Google Scholar

[36]

Y. Martel, Blow-up for the nonlinear Schrödinger equation in nonisotropic spaces, Nonlinear Anal., 28 (1997), 1903-1908. doi: 10.1016/S0362-546X(96)00036-3.  Google Scholar

[37]

Y. Martel and P. Raphaël, Strongly interacting blow up bubbles for the mass critical NLS, preprint, arXiv: 1512.00900. Google Scholar

[38]

J. L. Marzuola and M. E. Taylor, Higher dimensional vortex standing waves for nonlinear Schrödinger equations, Comm. Partial Differential Equations, 41 (2016), 398-446. doi: 10.1080/03605302.2015.1127966.  Google Scholar

[39]

S. Masaki, A sharp scattering condition for focusing mass-subcritical nonlinear Schrödinger equation, Commun. Pure Appl. Anal., 14 (2015), 1481-1531. doi: 10.3934/cpaa.2015.14.1481.  Google Scholar

[40]

S. Masaki, Two minimization problems on non-scattering solutions to mass-subcritical nonlinear Schrödinger equation, preprint, arXiv: 1605.09234. Google Scholar

[41]

K. Nakanishi and T. Roy, Global dynamics above the ground state for the energy-critical Schrödinger equation with radial data, Commun. Pure Appl. Anal., 15 (2016), 2023-2058. doi: 10.3934/cpaa.2016026.  Google Scholar

[42]

K. Nakanishi and W. Schlag, Global dynamics above the ground state energy for the cubic NLS equation in 3D, Calc. Var. Partial Differential Equations, 44 (2012), 1-45. doi: 10.1007/s00526-011-0424-9.  Google Scholar

[43]

K. Nakanishi and W. Schlag, Global dynamics above the ground state for the nonlinear Klein-Gordon equation without a radial assumption, Arch. Ration. Mech. Anal., 203 (2012), 809-851. doi: 10.1007/s00205-011-0462-7.  Google Scholar

[44]

T. Ogawa and Y. Tsutsumi, Blow-up of H1 solution for the nonlinear Schrödinger equation, J. Diff. Eq., 92, (1991), 317-330. doi: 10.1016/0022-0396(91)90052-B.  Google Scholar

[45]

Walter A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977), 149-162.  Google Scholar

[46]

W. A. Strauss, Nonlinear scattering theory at low energy, J. Funct. Anal., 41 (1981), 110-133. doi: 10.1016/0022-1236(81)90063-X.  Google Scholar

[47]

W. A. Strauss, Nonlinear scattering theory at low energy: sequel, J. Funct. Anal., 43 (1981), 281-293. doi: 10.1016/0022-1236(81)90019-7.  Google Scholar

[48]

T. Tao, Nonlinear Dispersive Equations. Local and Global Analysis, CBMS Regional Conference Series in Mathematics, 106. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2006. xvi+373 pp. doi: 10.1090/cbms/106.  Google Scholar

[1]

Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021031

[2]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2601-2617. doi: 10.3934/dcds.2020376

[3]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[4]

Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028

[5]

Woocheol Choi, Youngwoo Koh. On the splitting method for the nonlinear Schrödinger equation with initial data in $ H^1 $. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3837-3867. doi: 10.3934/dcds.2021019

[6]

Brahim Alouini. Finite dimensional global attractor for a class of two-coupled nonlinear fractional Schrödinger equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021013

[7]

Chenjie Fan, Zehua Zhao. Decay estimates for nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3973-3984. doi: 10.3934/dcds.2021024

[8]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[9]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[10]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[11]

Wei Wang, Wanbiao Ma, Xiulan Lai. Sufficient conditions for global dynamics of a viral infection model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3989-4011. doi: 10.3934/dcdsb.2020271

[12]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[13]

Meng-Xue Chang, Bang-Sheng Han, Xiao-Ming Fan. Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effect. Electronic Research Archive, , () : -. doi: 10.3934/era.2021024

[14]

Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030

[15]

Kazuhiro Kurata, Yuki Osada. Variational problems associated with a system of nonlinear Schrödinger equations with three wave interaction. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021100

[16]

Abderrazak Chrifi, Mostafa Abounouh, Hassan Al Moatassime. Galerkin method of weakly damped cubic nonlinear Schrödinger with Dirac impurity, and artificial boundary condition in a half-line. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021030

[17]

Yosra Soussi. Stable recovery of a non-compactly supported coefficient of a Schrödinger equation on an infinite waveguide. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021022

[18]

Yingte Sun. Floquet solutions for the Schrödinger equation with fast-oscillating quasi-periodic potentials. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021047

[19]

Umberto Biccari. Internal control for a non-local Schrödinger equation involving the fractional Laplace operator. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021014

[20]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (56)
  • HTML views (56)
  • Cited by (0)

Other articles
by authors

[Back to Top]