
-
Previous Article
S-shaped and broken s-shaped bifurcation curves for a multiparameter diffusive logistic problem with holling type-Ⅲ functional response
- CPAA Home
- This Issue
-
Next Article
The existence and nonexistence results of ground state nodal solutions for a Kirchhoff type problem
Regularity estimates for continuous solutions of α-convex balance laws
Dipartimento di Matematica 'Tullio Levi-Civita', Università degli Studi di Padova, via Trieste 63,35121 Padova, Italy |
${{\partial }_{t}}u+{{\partial }_{x}}f(u)=g\qquad g\ \text{bounded}, f\in {{C}^{\text{2}n}}(\mathbb{R})$ |
References:
[1] |
G. Alberti, S. Bianchini and L. Caravenna, Reduction on characteristics for continuous solution of a scalar balance law, in Hyperbolic Problems: Theory, Numerics, Applications, AIMS Series on Applied Mathematics, 8 (2014), 399–406. Google Scholar |
[2] |
G. Alberti, S. Bianchini and L. Caravenna, Eulerian, Lagrangian and Broad continuous solutions to a balance law with non convex flux Ⅰ, J. Differential Equations, 261 (2016), 4298–4337.
doi: 10.1016/j.jde.2016.06.026. |
[3] |
G. Alberti, S. Bianchini and L. Caravenna, Eulerian, Lagrangian and Broad continuous solutions to a balance law with non convex flux Ⅱ, Preprint SISSA 32/2016/MATE.
doi: 10.1016/j.jde.2016.06.026. |
[4] |
L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Clarendon Press, 2000. |
[5] |
L. Ambrosio, F. Serra Cassano and D. Vittone, Intrinsic regular hypersurfaces in Heisenberg groups, J. Geom. Anal., 16 (2006), 187–232.
doi: 10.1007/BF02922114. |
[6] |
S. Bianchini and L. Caravenna, On optimality of c-cyclically monotone transference plans, C. R. Math. Acad. Sci. Paris, Ser. Ⅰ, 348 (2010), 613–618.
doi: 10.1016/j.crma.2010.03.022. |
[7] |
S. Bianchini and E. Marconi, On the structure of L1-entropy solutions to scalar conservation laws in one space dimension, preprint. Google Scholar |
[8] |
F. Bigolin, L. Caravenna and F. Serra Cassano, Intrinsic Lipschitz graphs in Heisenberg groups and continuous solutions of a balance equation, Ann. Inst. H. Poincar´e Analyse Non Lin´eaire., 32 (2015), 925–963.
doi: 10.1016/j.anihpc.2014.05.001. |
[9] |
F. Bigolin and F. Serra Cassano, Intrinsic regular graphs in Heisenberg groups vs. weak solutions of non-linear first-order PDEs, Adv. Calc. Var., 3 (2010), 69–97.
doi: 10.1515/ACV.2010.004. |
[10] |
G. Citti, M. Manfredini, A. Pinamonti and F. Serra Cassano, Smooth approximation for the intrinsic Lipschitz functions in the Heisenberg group, Calc. Var. Partial Differ. Equ., 49 (2014), 1279–1308.
doi: 10.1007/s00526-013-0622-8. |
[11] |
C. M. Dafermos, Continuous solutions for balance laws, Ric. Mat., 55 (2006), 79–91.
doi: 10.1007/s11587-006-0006-x. |
[12] |
E. De Giorgi, F. Colombini and L. C. Piccinini, Frontiere orientate di misura minima e questione collegate, Classe di Scienze, Scuola Normale Superiore, Pisa, 1972. |
[13] |
H. Federer, Geometric Measure Theory, Springer-Verlag, 1969. |
[14] |
B. Franchi, R. Serapioni and F. Serra Cassano, Differentiability of intrinsic Lipschitz functions within Heisenberg groups, Springer-Verlag New York., 21 (2011), 1044–1084.
doi: 10.1007/s12220-010-9178-4. |
[15] |
J. Heinonen, Lectures on Analysis on Metric Spaces, Universitext, Springer-Verlag New York, 2001.
doi: 10.1007/978-1-4613-0131-8. |
[16] |
H. Holden and R. Xavier, Global semigroup of conservative solutions of the nonlinear variational wave equation, Arch. Ration. Mech. Anal., 201 (2011), 871–964.
doi: 10.1007/s00205-011-0403-5. |
[17] |
B. Kirchheim and F. Serra Cassano, Rectifiability and parameterization of intrinsic regular surfaces in the Heisenberg group, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 5 (2004), 871–896.
doi: 10.2422/2036-2145.2004.4.07. |
[18] |
S. N. Kružkov, First order quasilinear equations in several independent variables, Math. USSR Sb., 81 (1970), 228–255.
doi: 10.1070/SM1970v010n02ABEH002156. |
[19] |
K. Kunugui, Contributions à la théorie des ensembles boreliens et analytiques Ⅱ and Ⅲ, J. Fac. Sci. Hokkaido Imp. Univ. Ser. Ⅰ, 8 (1939), 79–108 and 8 (1940), 1–24. Google Scholar |
[20] |
R. Monti and D. Vittone, Sets with finite Hn-perimeter and controlled normal, Math. Z., 270 (2012), 351–367.
doi: 10.1007/s00209-010-0801-7. |
[21] |
J. Von Neumann, On rings of operators: Reduction Theory, Ann. of Math. (2), 50 (1949), 401–485.
doi: 10.2307/1969463. |
[22] |
S. M. Srivastava, A Course on Borel Sets, Grad. Texts Math. , vol. 180, Springer, 1998.
doi: 10.1007/978-3-642-85473-6. |
[23] |
E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, vol. 43. Monographs in Harmonic Analysis, Ⅲ. Princeton University Press, 1993. |
[24] |
D. Vittone, Submanifolds in Carnot Groups, Tesi di Perfezionamento, Scuola Normale Superiore, Pisa, Birkhaüser, 2008. |
show all references
References:
[1] |
G. Alberti, S. Bianchini and L. Caravenna, Reduction on characteristics for continuous solution of a scalar balance law, in Hyperbolic Problems: Theory, Numerics, Applications, AIMS Series on Applied Mathematics, 8 (2014), 399–406. Google Scholar |
[2] |
G. Alberti, S. Bianchini and L. Caravenna, Eulerian, Lagrangian and Broad continuous solutions to a balance law with non convex flux Ⅰ, J. Differential Equations, 261 (2016), 4298–4337.
doi: 10.1016/j.jde.2016.06.026. |
[3] |
G. Alberti, S. Bianchini and L. Caravenna, Eulerian, Lagrangian and Broad continuous solutions to a balance law with non convex flux Ⅱ, Preprint SISSA 32/2016/MATE.
doi: 10.1016/j.jde.2016.06.026. |
[4] |
L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Clarendon Press, 2000. |
[5] |
L. Ambrosio, F. Serra Cassano and D. Vittone, Intrinsic regular hypersurfaces in Heisenberg groups, J. Geom. Anal., 16 (2006), 187–232.
doi: 10.1007/BF02922114. |
[6] |
S. Bianchini and L. Caravenna, On optimality of c-cyclically monotone transference plans, C. R. Math. Acad. Sci. Paris, Ser. Ⅰ, 348 (2010), 613–618.
doi: 10.1016/j.crma.2010.03.022. |
[7] |
S. Bianchini and E. Marconi, On the structure of L1-entropy solutions to scalar conservation laws in one space dimension, preprint. Google Scholar |
[8] |
F. Bigolin, L. Caravenna and F. Serra Cassano, Intrinsic Lipschitz graphs in Heisenberg groups and continuous solutions of a balance equation, Ann. Inst. H. Poincar´e Analyse Non Lin´eaire., 32 (2015), 925–963.
doi: 10.1016/j.anihpc.2014.05.001. |
[9] |
F. Bigolin and F. Serra Cassano, Intrinsic regular graphs in Heisenberg groups vs. weak solutions of non-linear first-order PDEs, Adv. Calc. Var., 3 (2010), 69–97.
doi: 10.1515/ACV.2010.004. |
[10] |
G. Citti, M. Manfredini, A. Pinamonti and F. Serra Cassano, Smooth approximation for the intrinsic Lipschitz functions in the Heisenberg group, Calc. Var. Partial Differ. Equ., 49 (2014), 1279–1308.
doi: 10.1007/s00526-013-0622-8. |
[11] |
C. M. Dafermos, Continuous solutions for balance laws, Ric. Mat., 55 (2006), 79–91.
doi: 10.1007/s11587-006-0006-x. |
[12] |
E. De Giorgi, F. Colombini and L. C. Piccinini, Frontiere orientate di misura minima e questione collegate, Classe di Scienze, Scuola Normale Superiore, Pisa, 1972. |
[13] |
H. Federer, Geometric Measure Theory, Springer-Verlag, 1969. |
[14] |
B. Franchi, R. Serapioni and F. Serra Cassano, Differentiability of intrinsic Lipschitz functions within Heisenberg groups, Springer-Verlag New York., 21 (2011), 1044–1084.
doi: 10.1007/s12220-010-9178-4. |
[15] |
J. Heinonen, Lectures on Analysis on Metric Spaces, Universitext, Springer-Verlag New York, 2001.
doi: 10.1007/978-1-4613-0131-8. |
[16] |
H. Holden and R. Xavier, Global semigroup of conservative solutions of the nonlinear variational wave equation, Arch. Ration. Mech. Anal., 201 (2011), 871–964.
doi: 10.1007/s00205-011-0403-5. |
[17] |
B. Kirchheim and F. Serra Cassano, Rectifiability and parameterization of intrinsic regular surfaces in the Heisenberg group, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 5 (2004), 871–896.
doi: 10.2422/2036-2145.2004.4.07. |
[18] |
S. N. Kružkov, First order quasilinear equations in several independent variables, Math. USSR Sb., 81 (1970), 228–255.
doi: 10.1070/SM1970v010n02ABEH002156. |
[19] |
K. Kunugui, Contributions à la théorie des ensembles boreliens et analytiques Ⅱ and Ⅲ, J. Fac. Sci. Hokkaido Imp. Univ. Ser. Ⅰ, 8 (1939), 79–108 and 8 (1940), 1–24. Google Scholar |
[20] |
R. Monti and D. Vittone, Sets with finite Hn-perimeter and controlled normal, Math. Z., 270 (2012), 351–367.
doi: 10.1007/s00209-010-0801-7. |
[21] |
J. Von Neumann, On rings of operators: Reduction Theory, Ann. of Math. (2), 50 (1949), 401–485.
doi: 10.2307/1969463. |
[22] |
S. M. Srivastava, A Course on Borel Sets, Grad. Texts Math. , vol. 180, Springer, 1998.
doi: 10.1007/978-3-642-85473-6. |
[23] |
E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, vol. 43. Monographs in Harmonic Analysis, Ⅲ. Princeton University Press, 1993. |
[24] |
D. Vittone, Submanifolds in Carnot Groups, Tesi di Perfezionamento, Scuola Normale Superiore, Pisa, Birkhaüser, 2008. |


[1] |
Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935 |
[2] |
Shoichi Hasegawa, Norihisa Ikoma, Tatsuki Kawakami. On weak solutions to a fractional Hardy–Hénon equation: Part I: Nonexistence. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021033 |
[3] |
Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475 |
[4] |
Nikolaos Roidos. Expanding solutions of quasilinear parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021026 |
[5] |
Carmen Cortázar, M. García-Huidobro, Pilar Herreros, Satoshi Tanaka. On the uniqueness of solutions of a semilinear equation in an annulus. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021029 |
[6] |
Bing Gao, Rui Gao. On fair entropy of the tent family. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3797-3816. doi: 10.3934/dcds.2021017 |
[7] |
Patrick Henning, Anders M. N. Niklasson. Shadow Lagrangian dynamics for superfluidity. Kinetic & Related Models, 2021, 14 (2) : 303-321. doi: 10.3934/krm.2021006 |
[8] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[9] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[10] |
Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912 |
[11] |
Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005 |
[12] |
Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817 |
[13] |
Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463 |
[14] |
Palash Sarkar, Subhadip Singha. Verifying solutions to LWE with implications for concrete security. Advances in Mathematics of Communications, 2021, 15 (2) : 257-266. doi: 10.3934/amc.2020057 |
[15] |
Yu-Hsien Liao. Solutions and characterizations under multicriteria management systems. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021041 |
[16] |
Alexander Tolstonogov. BV solutions of a convex sweeping process with a composed perturbation. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021012 |
[17] |
Peng Chen, Xiaochun Liu. Positive solutions for Choquard equation in exterior domains. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021065 |
[18] |
Wen Si. Response solutions for degenerate reversible harmonic oscillators. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3951-3972. doi: 10.3934/dcds.2021023 |
[19] |
Jianxun Liu, Shengjie Li, Yingrang Xu. Quantitative stability of the ERM formulation for a class of stochastic linear variational inequalities. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021083 |
[20] |
Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2899-2920. doi: 10.3934/dcdsb.2020210 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]