• Previous Article
    A concentration phenomenon of the least energy solution to non-autonomous elliptic problems with a totally degenerate potential
  • CPAA Home
  • This Issue
  • Next Article
    Regularity estimates for continuous solutions of α-convex balance laws
March  2017, 16(2): 645-670. doi: 10.3934/cpaa.2017032

S-shaped and broken s-shaped bifurcation curves for a multiparameter diffusive logistic problem with holling type-Ⅲ functional response

Department of Applied Mathematics, National University of Tainan, Tainan 700, Taiwan, ROC

Received  April 2016 Revised  October 2016 Published  January 2017

Fund Project: The author is supported by NSC grant 101-2115-M-024-003.

We study exact multiplicity and bifurcation curves of positive solutions for a multiparameter diffusive logistic problem with Holling type-Ⅲ functional response
${\left\{ {\begin{array}{*{20}{l}} {{u^{\prime \prime }}(x) + \lambda \left[ {ru(1 - \frac{u}{q}) - \frac{{{u^p}}}{{1 + {u^p}}}\% } \right] = 0{\text{,}} - {\text{1}} < x < 1{\text{,}}} \\ {u( - 1) = u(1) = 0{\text{, }}} \end{array}} \right.},$
where u is the population density of the species, p > 1, q, r are two positive dimensionless parameters, and λ > 0 is a bifurcation parameter. For fixed p > 1, assume that q, r satisfy one of the following conditions: (ⅰ) rη1, p* q and (q, r) lies above the curve
$\begin{array}{l}{\Gamma _1} = \{ (q,r):q(a) = \frac{{a[2{a^p} - (p - 2)]}}{{{a^p} - (p - 1)}}{\rm{, }}\\\quad \quad \quad \quad \quad r(a) = \frac{{{a^{p - 1}}[2{a^p} - (p - 2)]}}{{{{({a^p} + 1)}^2}}}{\rm{, }}\sqrt[p]{{p - 1}}\% < a < C_p^*\} ;\end{array}$
(ⅱ) rη2, p* q and (q, r) lies on or below the curve Γ1, where η1, p* and η2, p* are two positive constants, and $C_{p}^{*}={{\left(\frac{{{p}^{2}}+3p-4+p\sqrt{%{{p}^{2}}+6p-7}}{4} \right)}^{1/p}}$. Then on the (λ, ||u||)-plane, we give a classification of three qualitatively different bifurcation curves: an S-shaped curve, a broken S-shaped curve, and a monotone increasing curve. Hence we are able to determine the exact multiplicity of positive solutions by the values of q, r and λ.
Citation: Tzung-shin Yeh. S-shaped and broken s-shaped bifurcation curves for a multiparameter diffusive logistic problem with holling type-Ⅲ functional response. Communications on Pure & Applied Analysis, 2017, 16 (2) : 645-670. doi: 10.3934/cpaa.2017032
References:
[1]

S.R.Carpenter, D.Ludwig and W.A.Brock, Management of eutrophication for lakes subject to potentially irreversible change, Ecol.Appl., 9 (1999), 751-771. Google Scholar

[2] J. Jiang and J. Shi, Bistability dynamics in some structured ecological models, in Spatial Ecology, Chapman & Hall/CRC Press, Boca Raton, FL, 2009.   Google Scholar
[3]

P.Korman and J.Shi, New exact multiplicity results with an application to a population model, Proc.Royal.Soc.Edinburgh Sect.A, 131 (2001), 1167-1182. doi: 10.1017/S0308210500001323.  Google Scholar

[4]

T.Laetsch, The number of solutions of a nonlinear two point boundary value problem, Indiana Univ.Math.J., 20 (1970), 1-13. doi: 10.1512/iumj.1970.20.20001.  Google Scholar

[5]

E.Lee, S.Sasi and R.Shivaji, S-shaped bifurcation curves in ecosystems, J.Math.Anal.Appl., 381 (2011), 732-741. doi: 10.1016/j.jmaa.2011.03.048.  Google Scholar

[6]

D.Ludwig, D.G.Aronson and H.F.Weinberger, Spatial patterning of the spruce budworm, J.Math.Biol., 8 (1979), 217-258. doi: 10.1007/BF00276310.  Google Scholar

[7]

D.Ludwig, D.D.Jones and C.S.Holling, Qualitative analysis of insect outbreak systems: the spruce budworm and the forest, J.Anim.Ecol., 47 (1978), 315-332. Google Scholar

[8]

R.M.May, Thresholds and breakpoints in ecosystems with a multiplicity of stable states, Nature, 269 (1977), 471-477. Google Scholar

[9]

J. D. Murray, Mathematical Biology. I. An introduction, 3rd edition, Interdisciplinary Applied Mathematics, 17, Springer-Verlag, New York, 2002.  Google Scholar

[10]

J. D. Murray, Mathematical Biology. Ⅱ. Spatial Models and Biomedical Applications, 3rd edition, Interdisciplinary Applied Mathematics, 18, Springer-Verlag, New York, 2003.  Google Scholar

[11]

I.Noy-Meir, Stability of grazing systems: An application of predator-prey graphs, J.Ecol., 63 (1975), 459-481. Google Scholar

[12]

M.Scheffer, S.Carpenter, J.A.Foley, C.Folke and B.Walkerk, Catastrophic shifts in ecosystems, Nature, 413 (2001), 591-596. Google Scholar

[13]

J.Shi and R.Shivaji, Persistence in reaction diffusion models with weak Allee effect, J.Math.Biol., 52 (2006), 807-829. doi: 10.1007/s00285-006-0373-7.  Google Scholar

[14]

J.Sugie and M.Katagama, Global asymptotic stability of a predator-prey system of Holling type, Nonlinear Anal., 38 (1999), 105-121. doi: 10.1016/S0362-546X(99)00099-1.  Google Scholar

[15]

J.Sugie, R.Kohno and R.Miyazaki, On a predator-prey system of Holling type, Proc.Amer.Math.Soc., 125 (1997), 2041-2050. doi: 10.1090/S0002-9939-97-03901-4.  Google Scholar

[16]

S.-H.Wang and T.-S.Yeh, S-shaped and broken S-shaped bifurcation diagrams with hysteresis for a multiparameter spruce budworm population problem in one space dimension, J.Differential Equations, 255 (2013), 812-839. doi: 10.1016/j.jde.2013.05.004.  Google Scholar

show all references

References:
[1]

S.R.Carpenter, D.Ludwig and W.A.Brock, Management of eutrophication for lakes subject to potentially irreversible change, Ecol.Appl., 9 (1999), 751-771. Google Scholar

[2] J. Jiang and J. Shi, Bistability dynamics in some structured ecological models, in Spatial Ecology, Chapman & Hall/CRC Press, Boca Raton, FL, 2009.   Google Scholar
[3]

P.Korman and J.Shi, New exact multiplicity results with an application to a population model, Proc.Royal.Soc.Edinburgh Sect.A, 131 (2001), 1167-1182. doi: 10.1017/S0308210500001323.  Google Scholar

[4]

T.Laetsch, The number of solutions of a nonlinear two point boundary value problem, Indiana Univ.Math.J., 20 (1970), 1-13. doi: 10.1512/iumj.1970.20.20001.  Google Scholar

[5]

E.Lee, S.Sasi and R.Shivaji, S-shaped bifurcation curves in ecosystems, J.Math.Anal.Appl., 381 (2011), 732-741. doi: 10.1016/j.jmaa.2011.03.048.  Google Scholar

[6]

D.Ludwig, D.G.Aronson and H.F.Weinberger, Spatial patterning of the spruce budworm, J.Math.Biol., 8 (1979), 217-258. doi: 10.1007/BF00276310.  Google Scholar

[7]

D.Ludwig, D.D.Jones and C.S.Holling, Qualitative analysis of insect outbreak systems: the spruce budworm and the forest, J.Anim.Ecol., 47 (1978), 315-332. Google Scholar

[8]

R.M.May, Thresholds and breakpoints in ecosystems with a multiplicity of stable states, Nature, 269 (1977), 471-477. Google Scholar

[9]

J. D. Murray, Mathematical Biology. I. An introduction, 3rd edition, Interdisciplinary Applied Mathematics, 17, Springer-Verlag, New York, 2002.  Google Scholar

[10]

J. D. Murray, Mathematical Biology. Ⅱ. Spatial Models and Biomedical Applications, 3rd edition, Interdisciplinary Applied Mathematics, 18, Springer-Verlag, New York, 2003.  Google Scholar

[11]

I.Noy-Meir, Stability of grazing systems: An application of predator-prey graphs, J.Ecol., 63 (1975), 459-481. Google Scholar

[12]

M.Scheffer, S.Carpenter, J.A.Foley, C.Folke and B.Walkerk, Catastrophic shifts in ecosystems, Nature, 413 (2001), 591-596. Google Scholar

[13]

J.Shi and R.Shivaji, Persistence in reaction diffusion models with weak Allee effect, J.Math.Biol., 52 (2006), 807-829. doi: 10.1007/s00285-006-0373-7.  Google Scholar

[14]

J.Sugie and M.Katagama, Global asymptotic stability of a predator-prey system of Holling type, Nonlinear Anal., 38 (1999), 105-121. doi: 10.1016/S0362-546X(99)00099-1.  Google Scholar

[15]

J.Sugie, R.Kohno and R.Miyazaki, On a predator-prey system of Holling type, Proc.Amer.Math.Soc., 125 (1997), 2041-2050. doi: 10.1090/S0002-9939-97-03901-4.  Google Scholar

[16]

S.-H.Wang and T.-S.Yeh, S-shaped and broken S-shaped bifurcation diagrams with hysteresis for a multiparameter spruce budworm population problem in one space dimension, J.Differential Equations, 255 (2013), 812-839. doi: 10.1016/j.jde.2013.05.004.  Google Scholar

Figure 1.  Classified graphs of growth rate per capita $g(u)=r(1-\frac{u}{q})-\frac{u^{p-1}}{1+u^{p}}$ on $(0, \infty)$ with fixed $p > 1$, drawn on the first quadrant of $(q, r)$-parameter plane according to the monotonicity of $g(u)$
Figure 2.  (a) S-shaped bifurcation curve $\bar{S}$ of (1). (b)-(c) Broken S-shaped bifurcation curves $\bar{S}$ of (1)
Figure 3.  Graphs of $\eta ={{m}_{p}}$, $\eta ={{\eta }_{1, p}}$ and $\eta ={{\eta }_{2, p}}$ for $p\in (1, 10]$
Figure 5.  Graphs of functions $\eta =I(u)$, $\eta =J(u)$, $\eta =K(u)$ on $(0, \infty)$
Figure 6.  Graphs of functions $\eta =I(u)$, $\eta =J(u)$, $\eta =M(u)$ on $(0, \infty)$
Figure 4.  (a) Graph of $N_{1}(B_{1, p}(\eta _{1, p}))+N_{2}(C_{2, p}(\eta _{1, p}))$ for $p\in \lbrack1.01, 10]$ (left). (b) Graph of $N_{3}(B_{1, p}(\eta _{2, p}))+N_{4}(C_{2, p}(\eta _{2, p}))$ for $p\in \lbrack 1.01, 10]$ (right)
[1]

Xianjun Wang, Huaguang Gu, Bo Lu. Big homoclinic orbit bifurcation underlying post-inhibitory rebound spike and a novel threshold curve of a neuron. Electronic Research Archive, , () : -. doi: 10.3934/era.2021023

[2]

Weiyi Zhang, Zuhan Liu, Ling Zhou. Dynamics of a nonlocal diffusive logistic model with free boundaries in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3767-3784. doi: 10.3934/dcdsb.2020256

[3]

Brian Ryals, Robert J. Sacker. Bifurcation in the almost periodic $ 2 $D Ricker map. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021089

[4]

Omer Gursoy, Kamal Adli Mehr, Nail Akar. Steady-state and first passage time distributions for waiting times in the $ MAP/M/s+G $ queueing model with generally distributed patience times. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021078

[5]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[6]

Jumpei Inoue, Kousuke Kuto. On the unboundedness of the ratio of species and resources for the diffusive logistic equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2441-2450. doi: 10.3934/dcdsb.2020186

[7]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[8]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[9]

Zhisu Liu, Yicheng Liu, Xiang Li. Flocking and line-shaped spatial configuration to delayed Cucker-Smale models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3693-3716. doi: 10.3934/dcdsb.2020253

[10]

Siqi Chen, Yong-Kui Chang, Yanyan Wei. Pseudo $ S $-asymptotically Bloch type periodic solutions to a damped evolution equation. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021017

[11]

Tian Hou, Yi Wang, Xizhuang Xie. Instability and bifurcation of a cooperative system with periodic coefficients. Electronic Research Archive, , () : -. doi: 10.3934/era.2021026

[12]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[13]

Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3759-3779. doi: 10.3934/dcds.2021015

[14]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[15]

Qixiang Wen, Shenquan Liu, Bo Lu. Firing patterns and bifurcation analysis of neurons under electromagnetic induction. Electronic Research Archive, , () : -. doi: 10.3934/era.2021034

[16]

Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145.

[17]

Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3241-3271. doi: 10.3934/dcds.2020404

[18]

Mikhail Dokuchaev, Guanglu Zhou, Song Wang. A modification of Galerkin's method for option pricing. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021077

[19]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2021, 13 (1) : 1-23. doi: 10.3934/jgm.2020032

[20]

Prabir Panja, Soovoojeet Jana, Shyamal kumar Mondal. Dynamics of a stage structure prey-predator model with ratio-dependent functional response and anti-predator behavior of adult prey. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 391-405. doi: 10.3934/naco.2020033

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (84)
  • HTML views (60)
  • Cited by (1)

Other articles
by authors

[Back to Top]