• Previous Article
    A sustainability condition for stochastic forest model
  • CPAA Home
  • This Issue
  • Next Article
    S-shaped and broken s-shaped bifurcation curves for a multiparameter diffusive logistic problem with holling type-Ⅲ functional response
March  2017, 16(2): 671-698. doi: 10.3934/cpaa.2017033

A concentration phenomenon of the least energy solution to non-autonomous elliptic problems with a totally degenerate potential

2-32-2, Kami-takada, Nakano, Tokyo 164-0002, Japan

Received  April 2016 Revised  August 2016 Published  January 2017

In this paper we study the following non-autonomous singularly perturbed Dirichlet problem:
${\varepsilon ^2}\Delta u -u + K(x)f(u) = 0, \; u > 0\quad {\rm{in}}\; \Omega, \quad u = 0\quad {\rm{on}}\; \partial \Omega, $
for a totally degenerate potential K. Here ε > 0 is a small parameter, $\Omega \subset \mathbb{R}^N$ is a bounded domain with a smooth boundary, and f is an appropriate superlinear subcritical function. In particular, f satisfies $0 < \liminf_{ t \to 0+} f(t)/t^q \leq \limsup_{ t \to 0+} f(t)/t^q < + \infty$ for some $1 < q < + \infty$. We show that the least energy solutions concentrate at the maximal point of the modified distance function $D(x) = \min \{ (q+1) d(x, \partial A), 2 d(x, \partial \Omega) \}$, where $A = \{ x \in \bar{ \Omega } \mid K(x) = \max_{ y \in \bar{ \Omega } } K(y) \}$ is assumed to be a totally degenerate set satisfying ${{A}^{{}^\circ }}\ne \emptyset $.
Citation: Shun Kodama. A concentration phenomenon of the least energy solution to non-autonomous elliptic problems with a totally degenerate potential. Communications on Pure & Applied Analysis, 2017, 16 (2) : 671-698. doi: 10.3934/cpaa.2017033
References:
[1]

M. Badiale and E. Serra, Semilinear Elliptic Equations for Beginners, Existence Results via the Variational Approach, Universitext, Springer, London, 2011. doi: 10.1007/978-0-85729-227-8.  Google Scholar

[2]

H. Berestycki, T. Gallouët and O. Kavian, Equations de champs scalaires euclidiens nonlinéaires dans le plan, C. R. Acad. Sc. Paris, Série I Math., 297 (1983), 307-310.  Google Scholar

[3]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations I, Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-375. doi: 10.1007/BF00250555.  Google Scholar

[4]

J. Byeon, Mountain pass solutions for singularly perturbed nonlinear Dirichlet problems, J. Differential Equations, 217 (2005), 257-281. doi: 10.1016/j.jde.2005.07.008.  Google Scholar

[5]

J. Byeon, Singularly perturbed nonlinear Dirichlet problems with a general nonlinearity, Trans. Amer. Math. Soc., 362 (2010), 1981-2001. doi: 10.1090/S0002-9947-09-04746-1.  Google Scholar

[6]

D. Cao, N. Dancer, E. Noussair and S. Yan, On the existence and profile of multi-peaked solutions to singularly perturbed semilinear Dirichlet problems, Discrete Contin. Dynam. Systems, 2 (1996), 221-236. doi: 10.3934/dcds.1996.2.221.  Google Scholar

[7]

M. del Pino and P. Felmer, Spike-layered solutions of singularly perturbed elliptic problems in a degenerate setting, Indiana Univ. math. J., 48 (1999), 883-898. doi: 10.1512/iumj.1999.48.1596.  Google Scholar

[8]

M. del Pino, P. Felmer and J. Wei, Multi-peak solutions for some singular perturbation problems, Calc. Var. Partial Differential Equations, 10 (2000), 119-134. doi: 10.1007/s005260050147.  Google Scholar

[9]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in Rn, Advances in Math., Supplementary Studies, 7A (1981), 369-402.  Google Scholar

[10]

Q. Han and F. Lin, Elliptic Partial Differential Equations, Second, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1(2011).  Google Scholar

[11]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415. Google Scholar

[12]

S. Kesavan, Symmetrization & Applications, Series in Analysis, 3, World Scientific Publishing Co. Pte. Ltd. , Hackensack, NJ, 2006. doi: 10.1142/9789812773937.  Google Scholar

[13]

S. Kodama, On a concentration phenomenon of the least energy solution to nonlinear Schrödinger equations with a totally degenerate potential, preprint. Google Scholar

[14]

Y. Y. Li and L. Nirenberg, The Dirichlet problem for singularly perturbed elliptic equations, Comm. Pure Appl. Math., 51 (1998), 1445-1490. doi: 10.1002/(SICI)1097-0312(199811/12)51:11/12<1445::AID-CPA9>3.3.CO;2-Q.  Google Scholar

[15]

C. S. Lin, W. M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations, 72 (1988), 1-27. doi: 10.1016/0022-0396(88)90147-7.  Google Scholar

[16]

G. Lu and J. Wei, On nonlinear Schrödinger equations with totally degenerate potentials, C. R. Acad. Sci. Paris Sr. I Math., 326 (1998), 691-696. doi: 10.1016/S0764-4442(98)80032-3.  Google Scholar

[17]

W. M. Ni and J. Wei, On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems, Comm. Pure Appl. Math., 48 (1995), 731-768. doi: 10.1002/cpa.3160480704.  Google Scholar

[18]

N. Qiao and Z.-Q. Wang, Multiplicity results for positive solutions to non-autonomous elliptic problems, Electron. J. Differential Equations, 28 (1999), 1-28.  Google Scholar

[19]

X. Ren, Least-energy solutions to a non-autonomous semilinear problem with small diffusion coefficient, Electronic J. Partial Differential Equations, 5 (1993), 1-21.  Google Scholar

[20] G. N. Watson, A Treatise on the Theory of Bessel Functions. Reprint of the second (1944) edition, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995.   Google Scholar
[21]

J. Wei, On the construction of single-peaked solutions to a singularly perturbed semilinear Dirichlet problem, J. Differential Equations, 129 (1996), 315-333. doi: 10.1006/jdeq.1996.0120.  Google Scholar

[22]

C. Zhao, On the number of interior peaks of solutions to a non-autonomous singularly perturbed Neumann problem, Proc. Roy. Soc. Edinburgh Sect., A139 (2009), 427-448. doi: 10.1017/S0308210507001229.  Google Scholar

show all references

References:
[1]

M. Badiale and E. Serra, Semilinear Elliptic Equations for Beginners, Existence Results via the Variational Approach, Universitext, Springer, London, 2011. doi: 10.1007/978-0-85729-227-8.  Google Scholar

[2]

H. Berestycki, T. Gallouët and O. Kavian, Equations de champs scalaires euclidiens nonlinéaires dans le plan, C. R. Acad. Sc. Paris, Série I Math., 297 (1983), 307-310.  Google Scholar

[3]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations I, Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-375. doi: 10.1007/BF00250555.  Google Scholar

[4]

J. Byeon, Mountain pass solutions for singularly perturbed nonlinear Dirichlet problems, J. Differential Equations, 217 (2005), 257-281. doi: 10.1016/j.jde.2005.07.008.  Google Scholar

[5]

J. Byeon, Singularly perturbed nonlinear Dirichlet problems with a general nonlinearity, Trans. Amer. Math. Soc., 362 (2010), 1981-2001. doi: 10.1090/S0002-9947-09-04746-1.  Google Scholar

[6]

D. Cao, N. Dancer, E. Noussair and S. Yan, On the existence and profile of multi-peaked solutions to singularly perturbed semilinear Dirichlet problems, Discrete Contin. Dynam. Systems, 2 (1996), 221-236. doi: 10.3934/dcds.1996.2.221.  Google Scholar

[7]

M. del Pino and P. Felmer, Spike-layered solutions of singularly perturbed elliptic problems in a degenerate setting, Indiana Univ. math. J., 48 (1999), 883-898. doi: 10.1512/iumj.1999.48.1596.  Google Scholar

[8]

M. del Pino, P. Felmer and J. Wei, Multi-peak solutions for some singular perturbation problems, Calc. Var. Partial Differential Equations, 10 (2000), 119-134. doi: 10.1007/s005260050147.  Google Scholar

[9]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in Rn, Advances in Math., Supplementary Studies, 7A (1981), 369-402.  Google Scholar

[10]

Q. Han and F. Lin, Elliptic Partial Differential Equations, Second, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1(2011).  Google Scholar

[11]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415. Google Scholar

[12]

S. Kesavan, Symmetrization & Applications, Series in Analysis, 3, World Scientific Publishing Co. Pte. Ltd. , Hackensack, NJ, 2006. doi: 10.1142/9789812773937.  Google Scholar

[13]

S. Kodama, On a concentration phenomenon of the least energy solution to nonlinear Schrödinger equations with a totally degenerate potential, preprint. Google Scholar

[14]

Y. Y. Li and L. Nirenberg, The Dirichlet problem for singularly perturbed elliptic equations, Comm. Pure Appl. Math., 51 (1998), 1445-1490. doi: 10.1002/(SICI)1097-0312(199811/12)51:11/12<1445::AID-CPA9>3.3.CO;2-Q.  Google Scholar

[15]

C. S. Lin, W. M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations, 72 (1988), 1-27. doi: 10.1016/0022-0396(88)90147-7.  Google Scholar

[16]

G. Lu and J. Wei, On nonlinear Schrödinger equations with totally degenerate potentials, C. R. Acad. Sci. Paris Sr. I Math., 326 (1998), 691-696. doi: 10.1016/S0764-4442(98)80032-3.  Google Scholar

[17]

W. M. Ni and J. Wei, On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems, Comm. Pure Appl. Math., 48 (1995), 731-768. doi: 10.1002/cpa.3160480704.  Google Scholar

[18]

N. Qiao and Z.-Q. Wang, Multiplicity results for positive solutions to non-autonomous elliptic problems, Electron. J. Differential Equations, 28 (1999), 1-28.  Google Scholar

[19]

X. Ren, Least-energy solutions to a non-autonomous semilinear problem with small diffusion coefficient, Electronic J. Partial Differential Equations, 5 (1993), 1-21.  Google Scholar

[20] G. N. Watson, A Treatise on the Theory of Bessel Functions. Reprint of the second (1944) edition, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995.   Google Scholar
[21]

J. Wei, On the construction of single-peaked solutions to a singularly perturbed semilinear Dirichlet problem, J. Differential Equations, 129 (1996), 315-333. doi: 10.1006/jdeq.1996.0120.  Google Scholar

[22]

C. Zhao, On the number of interior peaks of solutions to a non-autonomous singularly perturbed Neumann problem, Proc. Roy. Soc. Edinburgh Sect., A139 (2009), 427-448. doi: 10.1017/S0308210507001229.  Google Scholar

Figure 1.  Example 2 (ⅰ)
Figure 2.  Example 2 (ⅱ)
[1]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[2]

Pengyu Chen. Periodic solutions to non-autonomous evolution equations with multi-delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2921-2939. doi: 10.3934/dcdsb.2020211

[3]

K. Ravikumar, Manil T. Mohan, A. Anguraj. Approximate controllability of a non-autonomous evolution equation in Banach spaces. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 461-485. doi: 10.3934/naco.2020038

[4]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[5]

Lingyu Li, Zhang Chen. Asymptotic behavior of non-autonomous random Ginzburg-Landau equation driven by colored noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3303-3333. doi: 10.3934/dcdsb.2020233

[6]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2725-3737. doi: 10.3934/dcds.2020383

[7]

Anhui Gu. Weak pullback mean random attractors for non-autonomous $ p $-Laplacian equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3863-3878. doi: 10.3934/dcdsb.2020266

[8]

Meiqiang Feng, Yichen Zhang. Positive solutions of singular multiparameter p-Laplacian elliptic systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021083

[9]

Minh-Phuong Tran, Thanh-Nhan Nguyen. Pointwise gradient bounds for a class of very singular quasilinear elliptic equations. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021043

[10]

Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021017

[11]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[12]

Bruno Premoselli. Einstein-Lichnerowicz type singular perturbations of critical nonlinear elliptic equations in dimension 3. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021069

[13]

Guanming Gai, Yuanyuan Nie, Chunpeng Wang. A degenerate elliptic problem from subsonic-sonic flows in convergent nozzles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021070

[14]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[15]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3273-3293. doi: 10.3934/dcds.2020405

[16]

Tong Li, Nitesh Mathur. Riemann problem for a non-strictly hyperbolic system in chemotaxis. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021128

[17]

Horst R. Thieme. Remarks on resolvent positive operators and their perturbation. Discrete & Continuous Dynamical Systems, 1998, 4 (1) : 73-90. doi: 10.3934/dcds.1998.4.73

[18]

Alexander Tolstonogov. BV solutions of a convex sweeping process with a composed perturbation. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021012

[19]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[20]

Monica Conti, Lorenzo Liverani, Vittorino Pata. A note on the energy transfer in coupled differential systems. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021042

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (94)
  • HTML views (50)
  • Cited by (0)

Other articles
by authors

[Back to Top]