March  2017, 16(2): 699-718. doi: 10.3934/cpaa.2017034

A sustainability condition for stochastic forest model

1. 

Promotive Center for International Education and Research of Agriculture, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Nishi-ku, Fukuoka 812-8581, Japan

2. 

Department of Information and Physical Sciences, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan

3. 

Department of Applied Physics, Graduate School of Engineering, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan

Received  May 2016 Revised  November 2016 Published  January 2017

Fund Project: This work was supported by JSPS KAKENHI Grant Number 20140047, This work was supported by JSPS Grant-in-Aid for Scientific Research (No. 26400166).

A stochastic forest model of young and old age class trees is studied. First, we prove existence, uniqueness and boundedness of global nonnegative solutions. Second, we investigate asymptotic behavior of solutions by giving a sufficient condition for sustainability of the forest. Under this condition, we show existence of a Borel invariant measure. Third, we present several sufficient conditions for decline of the forest. Finally, we give some numerical examples.

Citation: TÔn Vı$\underset{.}{\overset{\hat{\ }}{\mathop{\text{E}}}}\, $T T$\mathop {\text{A}}\limits_. $, Linhthi hoai Nguyen, Atsushi Yagi. A sustainability condition for stochastic forest model. Communications on Pure & Applied Analysis, 2017, 16 (2) : 699-718. doi: 10.3934/cpaa.2017034
References:
[1]

M. Ya. Antonovsky, Impact of the factors of the environment on the dynamics of population (mathematical model), in Proc. Soviet-American Symp. Comprehensive Analysis of the Environment, Tbilisi 1974, Leningrad: Hydromet, (1975), 218-230. Google Scholar

[2]

L. Arnold, Stochastic Differential Equations: Theory and Applications, Wiley, New York, 1972.  Google Scholar

[3]

L. H. Chuan and A. Yagi, Dynamical system for forest kinematic model, Adv. Math. Sci. Appl., 16 (2006), 393-409.  Google Scholar

[4]

L. H. Chuan, T. Tsujikawa and A. Yagi, Asymptotic behavior of solutions for forest kinematic model, Funkcial. Ekvac., 49 (2006), 427-449. doi: 10.1619/fesi.49.427.  Google Scholar

[5]

L. H. Chuan, T. Tsujikawa and A. Yagi, Stationary solutions to forest kinematic model, Glasg. Math. J., 51 (2009), 1-17. doi: 10.1017/S0017089508004485.  Google Scholar

[6]

S. R. Foguel, The ergodic theory of positive operators on continuous functions, Ann. Scuola Norm. Sup. Pisa, 27 (1973), 19-51.  Google Scholar

[7] A. Friedman, Stochastic Differential Equations and Applications, Academic Press, New York, 1976.   Google Scholar
[8]

N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, NorthHolland, Tokyo, 1981.  Google Scholar

[9]

I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Springer-Verlag, Berlin, 1991. doi: 10.1007/978-1-4612-0949-2.  Google Scholar

[10]

P. E. Kloeden, E. Platen and H. Schurz, Numerical Solution of SDE through Computer Experiments, Springer-Verlag, Berlin, 1994. doi: 10.1007/978-3-642-57913-4.  Google Scholar

[11]

Yu. A. Kuznetsov, M. Ya. Antonovsky, V. N. Biktashev and E. A. Aponina, A cross-diffusion model of forest boundary dynamics, J. Math. Biol., 32 (1994), 219-232. doi: 10.1007/BF00163879.  Google Scholar

[12]

X. Mao, Stochastic Differential Equations and Applications, 2nd edition, Horwood, Chichester, 2008. doi: 10.1533/9780857099402.  Google Scholar

[13]

L. Michael, Conservative Markov processes on a topological space, Isr. J. Math., 8 (1970), 165-186. doi: 10.1007/BF02771312.  Google Scholar

[14]

L. T. H. Nguyen and T. V. Ta., Dynamics of a stochastic ratio-dependent predator-prey model, Anal. Appl. (Singap.), 9 (2011), 329-344. doi: 10.1142/S0219530511001868.  Google Scholar

[15]

T. Shirai, L. H. Chuan and A. Yagi, Asymptotic behavior of solutions for forest kinematic model under Dirichlet conditions, Sci. Math. Jpn., 66 (2007), 289-301.  Google Scholar

[16]

T. V. Ta., L. T. H. Nguyen and A. Yagi, Flocking and non-flocking behavior in a stochastic Cucker-Smale system, Anal. Appl. (Singap.), 12 (2014), 63-73.  Google Scholar

[17]

A. Yagi, Abstract Parabolic Evolution Equations and their Applications, Springer, Berlin, 2010.  Google Scholar

show all references

References:
[1]

M. Ya. Antonovsky, Impact of the factors of the environment on the dynamics of population (mathematical model), in Proc. Soviet-American Symp. Comprehensive Analysis of the Environment, Tbilisi 1974, Leningrad: Hydromet, (1975), 218-230. Google Scholar

[2]

L. Arnold, Stochastic Differential Equations: Theory and Applications, Wiley, New York, 1972.  Google Scholar

[3]

L. H. Chuan and A. Yagi, Dynamical system for forest kinematic model, Adv. Math. Sci. Appl., 16 (2006), 393-409.  Google Scholar

[4]

L. H. Chuan, T. Tsujikawa and A. Yagi, Asymptotic behavior of solutions for forest kinematic model, Funkcial. Ekvac., 49 (2006), 427-449. doi: 10.1619/fesi.49.427.  Google Scholar

[5]

L. H. Chuan, T. Tsujikawa and A. Yagi, Stationary solutions to forest kinematic model, Glasg. Math. J., 51 (2009), 1-17. doi: 10.1017/S0017089508004485.  Google Scholar

[6]

S. R. Foguel, The ergodic theory of positive operators on continuous functions, Ann. Scuola Norm. Sup. Pisa, 27 (1973), 19-51.  Google Scholar

[7] A. Friedman, Stochastic Differential Equations and Applications, Academic Press, New York, 1976.   Google Scholar
[8]

N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, NorthHolland, Tokyo, 1981.  Google Scholar

[9]

I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Springer-Verlag, Berlin, 1991. doi: 10.1007/978-1-4612-0949-2.  Google Scholar

[10]

P. E. Kloeden, E. Platen and H. Schurz, Numerical Solution of SDE through Computer Experiments, Springer-Verlag, Berlin, 1994. doi: 10.1007/978-3-642-57913-4.  Google Scholar

[11]

Yu. A. Kuznetsov, M. Ya. Antonovsky, V. N. Biktashev and E. A. Aponina, A cross-diffusion model of forest boundary dynamics, J. Math. Biol., 32 (1994), 219-232. doi: 10.1007/BF00163879.  Google Scholar

[12]

X. Mao, Stochastic Differential Equations and Applications, 2nd edition, Horwood, Chichester, 2008. doi: 10.1533/9780857099402.  Google Scholar

[13]

L. Michael, Conservative Markov processes on a topological space, Isr. J. Math., 8 (1970), 165-186. doi: 10.1007/BF02771312.  Google Scholar

[14]

L. T. H. Nguyen and T. V. Ta., Dynamics of a stochastic ratio-dependent predator-prey model, Anal. Appl. (Singap.), 9 (2011), 329-344. doi: 10.1142/S0219530511001868.  Google Scholar

[15]

T. Shirai, L. H. Chuan and A. Yagi, Asymptotic behavior of solutions for forest kinematic model under Dirichlet conditions, Sci. Math. Jpn., 66 (2007), 289-301.  Google Scholar

[16]

T. V. Ta., L. T. H. Nguyen and A. Yagi, Flocking and non-flocking behavior in a stochastic Cucker-Smale system, Anal. Appl. (Singap.), 12 (2014), 63-73.  Google Scholar

[17]

A. Yagi, Abstract Parabolic Evolution Equations and their Applications, Springer, Berlin, 2010.  Google Scholar

Figure 1.  Sample trajectories of $u_t$ and $v_t$ of (2) with parameters: $a=2, b=1, c=2.5, f=4, h=1, \rho=5, \sigma=0.5$ and initial value $(u_0, v_0)=(2, 1).$ The left figure illustrates a sample trajectory of $(u_t, v_t)$ in the phase space; the right figure illustrates sample trajectories of $u_t$ and $v_t$ along $t\in [0,100]$
Fig. 1">Figure 2.  Distribution of $(u_t, v_t)$ of (2) at $t=10^3$. The parameters and initial value are taken as in the legend of Fig. 1
Fig. 1">Figure 3.  Graphs of $\mathbb Eu$ and $\mathbb Ev$ along $ t\in [0, 20]$. The parameters and initial value are taken as in the legend of Fig. 1
Fig. 1">Figure 4.  Sample trajectory of two processes $I$ and $J$ defined by $I(t)=\frac{1}{t}\int_0^t u_sds$ and $J(t)=\frac{1}{t}\int_0^t v_sds$ along $ t\in [0,100].$ The parameters and initial value are taken as in the legend of Fig. 1
Fig. 1. These functions are calculated on the basis of 2000 sample trajectories of $(u_t, v_t)$ corresponding to each initial value">Figure 5.  Graph of probability functions $R$ and $S$ defined by $R(t)=\mathbb P\{(u_t, v_t)\in A; (u_0, v_0)=(2, 1)\}$ and $S(t)=\mathbb P\{(u_t, v_t)\in A; (u_0, v_0)=(3, 4)\}$ along $t\in [50,100], $ where $A=[0.5, 30]\times[0.1, 20]$ and the parameters of (2) are taken as in the legend of Fig. 1. These functions are calculated on the basis of 2000 sample trajectories of $(u_t, v_t)$ corresponding to each initial value
Figure 6.  Decline of forest under the effect of noise with large intensity $\sigma$. Here, $a=3, b=4, c=5, f=6, h=2, \rho=7, \sigma=4$ and initial value $(u_0, v_0)=(4, 3)$. The left figure is a sample trajectory of $(u_t, v_t)$ in the phase space; the right figure is a sample trajectory of $u$ and $v$ along $t\in [0, 1]$
Figure 7.  Decline of forest when the mortality $h$ of old trees is large. Here, $a=3, b=4, c=5, f=6, h=3.82, \rho=7, \sigma=0.25$ and initial value $(u_0, v_0)=(4, 3).$ The figure gives a graph of $\mathbb Eu$ and $\mathbb Ev$ along $t\in [0, 10]$
Table 1.  Stability and instability of stationary solutions of (1)
h(0, h*)(h*, h*)(h*, ∞)
Ounstablestableglob. asymp. stable
P+stablestable
Punstable
h(0, h*)(h*, h*)(h*, ∞)
Ounstablestableglob. asymp. stable
P+stablestable
Punstable
[1]

Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192

[2]

Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209

[3]

Qi Lü, Xu Zhang. A concise introduction to control theory for stochastic partial differential equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021020

[4]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[5]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[6]

Wensheng Yin, Jinde Cao, Guoqiang Zheng. Further results on stabilization of stochastic differential equations with delayed feedback control under $ G $-expectation framework. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021072

[7]

Kehan Si, Zhenda Xu, Ka Fai Cedric Yiu, Xun Li. Open-loop solvability for mean-field stochastic linear quadratic optimal control problems of Markov regime-switching system. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021074

[8]

Mrinal K. Ghosh, Somnath Pradhan. A nonzero-sum risk-sensitive stochastic differential game in the orthant. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021025

[9]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[10]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[11]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[12]

Burcu Gürbüz. A computational approximation for the solution of retarded functional differential equations and their applications to science and engineering. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021069

[13]

Seddigheh Banihashemi, Hossein Jafaria, Afshin Babaei. A novel collocation approach to solve a nonlinear stochastic differential equation of fractional order involving a constant delay. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021025

[14]

Jun Moon. Linear-quadratic mean-field type stackelberg differential games for stochastic jump-diffusion systems. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021026

[15]

Shangzhi Li, Shangjiang Guo. Permanence and extinction of a stochastic SIS epidemic model with three independent Brownian motions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2693-2719. doi: 10.3934/dcdsb.2020201

[16]

Zheng Liu, Tianxiao Wang. A class of stochastic Fredholm-algebraic equations and applications in finance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3879-3903. doi: 10.3934/dcdsb.2020267

[17]

Jan Rychtář, Dewey T. Taylor. Moran process and Wright-Fisher process favor low variability. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3491-3504. doi: 10.3934/dcdsb.2020242

[18]

Ajay Jasra, Kody J. H. Law, Yaxian Xu. Markov chain simulation for multilevel Monte Carlo. Foundations of Data Science, 2021, 3 (1) : 27-47. doi: 10.3934/fods.2021004

[19]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[20]

Dariusz Idczak. A Gronwall lemma for functions of two variables and its application to partial differential equations of fractional order. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021019

[Back to Top]