We study a two player zero-sum tug-of-war game with varying probabilities that depend on the game location x. In particular, we show that the value of the game is locally asymptotically Hölder continuous. The main difficulty is the loss of translation invariance. We also show the existence and uniqueness of values of the game. As an application, we prove that the value function of the game converges to a viscosity solution of the normalized p(x) -Laplacian.
Citation: |
[1] |
T. Adamowicz and P. Hästö, Harnack's inequality and the strong p(·)-Laplacian, J. Differential Equations, 260 (2011), 1631-1649.
doi: 10.1016/j.jde.2010.10.006.![]() ![]() ![]() |
[2] |
S. N. Armstrong and C. K. Smart, A finite difference approach to the infinity Laplace equation and tug-of-war games, Trans. Amer. Math. Soc., 364 (2012), 595-636.
doi: 10.1090/S0002-9947-2011-05289-X.![]() ![]() ![]() |
[3] |
L. A. Caffarelli and X. Cabré, Fully nonlinear Elliptic Equations, American Mathematical Society, Providence, RI, 1995.
doi: 10.1090/coll/043.![]() ![]() ![]() |
[4] |
L. C. Evans and J. Spruck, Motion of level sets by mean curvature, I, J. Differential Geom., 33 (1991), 635-681.
![]() ![]() |
[5] |
Y. Giga, Surface Evolution Equations. A Level Set Approach, Birkhäuser Verlag, Basel, 2006.
![]() ![]() |
[6] |
H. Hartikainen, A dynamic programming principle with continuous solutions related to the p-Laplacian, 1 < p < ∞, Differential Integral Equations, 29 (2016), 583-600.
![]() ![]() |
[7] |
Ishii and P.-Lions L. H., Viscosity solutions of fully nonlinear second-order elliptic partial differential equations, J. Differential Equations, 83 (1990), 26-78.
doi: 10.1016/0022-0396(90)90068-Z.![]() ![]() ![]() |
[8] |
B. Kawohl, J. J. Manfredi and M. Parviainen, Solutions of nonlinear PDEs in the sense of averages, J. Math. Pures Appl., 97 (2012), 173-188.
doi: 10.1016/j.matpur.2011.07.001.![]() ![]() ![]() |
[9] |
S. Koike, A Beginner's Guide to The Theory of Viscosity Solutions, Mathematical Society of Japan, Tokyo, 2004.
![]() ![]() |
[10] |
S. Kusuoka, Hölder continuity and bounds for fundamental solutions to nondivergence form parabolic equations, Anal. PDE, 8 (2015), 1-32.
doi: 10.2140/apde.2015.8.1.![]() ![]() ![]() |
[11] |
H. Luiro and M. Parviainen, Regularity for nonlinear stochastic games, preprint, arXiv: 1509.07263.
![]() |
[12] |
H. Luiro, M. Parviainen and E. Saksman, Harnack's inequality for p-harmonic functions via stochastic games, Comm. Partial Differential Equations, 38 (2013), 1985-2003.
doi: 10.1080/03605302.2013.814068.![]() ![]() ![]() |
[13] |
H. Luiro, M. Parviainen and E. Saksman, On the existence and uniqueness of p-harmonious functions, Differential Integral Equations, 27 (2014), 201-216.
![]() ![]() |
[14] |
T. Lindvall and L. C. G. Rogers, Coupling of multidimensional diffusions by reflection, Ann. Probab., 14 (1986), 860-872.
![]() ![]() |
[15] |
J. J. Manfredi, M. Parviainen and J. D. Rossi, An asymptotic mean value characterization for p-harmonic functions, Proc. Amer. Math. Soc., 138 (2010), 881-889.
doi: 10.1090/S0002-9939-09-10183-1.![]() ![]() ![]() |
[16] |
J. J. Manfredi, M. Parviainen and J. D. Rossi, On the definition and properties of pharmonious functions, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 11 (2012), 215-241.
![]() ![]() |
[17] |
Pérez-Llanos M., A homogenization process for the strong p(x)-Laplacian, Nonlinear Anal., 76 (2013), 105-114.
doi: 10.1016/j.na.2012.08.006.![]() ![]() ![]() |
[18] |
A. Porretta and E. Priola, Global Lipschitz regularizing effects for linear and nonlinear parabolic equations, J. Math. Pures Appl., 100 (2013), 633-686.
doi: 10.1016/j.matpur.2013.01.016.![]() ![]() ![]() |
[19] |
Y. Peres and S. Sheffield, Tug-of-war with noise: a game-theoretic view of the p-Laplacian, Duke Math. J., 145 (2008), 91-120.
doi: 10.1215/00127094-2008-048.![]() ![]() ![]() |
[20] |
Y. Peres, O. Schramm, S. Sheffield and D. B. Wilson, Tug-of-war and the infinity Laplacian, J. Amer. Math. Soc., 22 (2009), 167-210.
doi: 10.1090/S0894-0347-08-00606-1.![]() ![]() ![]() |
[21] |
E. Priola and F.-Y. Wang, Gradient estimates for diffusion semigroups with singular coefficients, J. Funct. Anal., 236 (2006), 244-264.
doi: 10.1016/j.jfa.2005.12.010.![]() ![]() ![]() |
[22] |
S. M. Srivastava, A course on Borel sets, Springer-Verlag, New York, 1998.
doi: 10.1007/978-3-642-85473-6.![]() ![]() ![]() |
[23] |
C. Zhang and S. Zhou, Hölder regularity for the gradients of solutions of the strong p(x)-Laplacian, J. Math. Anal. Appl., 389 (2013), 1066-1077.
doi: 10.1016/j.jmaa.2011.12.047.![]() ![]() ![]() |