In this paper, we study a fully nonlinear inverse curvature flow in Euclidean space, and prove a non-collapsing property for this flow using maximum principle. Precisely, we show that upon some conditions on speed function, the curvature of the largest touching interior ball is bounded by a multiple of the speed.
Citation: |
[1] |
B. Andrews, Non-collapsing in mean-convex mean curvature flow, Geometry and Topology, 16 (2012), 1413-1418.
doi: 10.2140/gt.2012.16.1413.![]() ![]() ![]() |
[2] |
B. Andrews, M. Langford and J. McCoy, Non-collapsing in fully non-linear curvature flows, Ann. I. Poincar′e-AN, 30 (2013), 23-32.
doi: 10.1016/j.anihpc.2012.05.003.![]() ![]() ![]() |
[3] |
B. Andrews and M. Langford, Two-sided non-collapsing curvature flows, preprint. arXiv: 1310.0717.
![]() ![]() |
[4] |
B. Andrews, X. L. Han, H. Z. Li and Y. Wei, Non-collapsing for hypersurface flows in the sphere and hyperbolic space, Annali Della Scuola Normal Superiore DI Pisa-Classe DI Science, 14 (2015), 331-338.
![]() ![]() |
[5] |
S. Brendle, Embedded minimal tori in S3 and the Lawson conjecture, Acta. Math., 257 (2015), 462-475.
doi: 10.1007/s11511-013-0101-2.![]() ![]() ![]() |
[6] |
S. Brendle, A sharp bound for the inscribed radius under mean curvature flow, Invent. Math., 202 (2015), 217-237.
doi: 10.1007/s00222-014-0570-8.![]() ![]() ![]() |
[7] |
C. Gerhardt, Flow of Nonconvex Hypersurfaces into Spheres, J. Diff. Geom., 32 (1990), 299-314.
![]() ![]() |
[8] |
M. Grayson, Shortening embedded curves, Ann. of Math., 129 (1989), 71-111.
doi: 10.2307/1971486.![]() ![]() ![]() |
[9] |
R. S. Hamilton, An isoperimetric estimate for the Ricci flow on the two-sphere, Ann. of Math. Stud., 137 (1995), 191-200.
doi: 10.1080/09502389500490321.![]() ![]() ![]() |
[10] |
R. S. Hamilton, Isoperimetric estimates for the curve shrinking flow in the plane, Ann. of Math. Stud., 137 (1995), 201-222.
doi: 10.1016/1053-8127(94)00130-3.![]() ![]() ![]() |
[11] |
G. Huisken, An distance comparison principle for evolving curves, Asian J. Math., 2 (1998), 127-133.
doi: 10.4310/AJM.1998.v2.n1.a2.![]() ![]() ![]() |
[12] |
Y. N. Liu and H. J. Ju, Evolution of convex hypersurfaces by a fully nonlinear flow, Nonlinear Analysis, T.M.A., 130 (2016), 47-58.
doi: 10.1016/j.na.2015.09.014.![]() ![]() ![]() |
[13] |
W. M. Sheng and X. J. Wang, Singularity of profile in the mean curvature flow, Methods Appl. Anal., 16 (2009), 139-155.
doi: 10.4310/MAA.2009.v16.n2.a1.![]() ![]() ![]() |
[14] |
J. I. E. Urbas, An expansion of convex hypersurfaces, J. Diff. Geom., 33 (1991), 91-125.
![]() ![]() |
[15] |
J. I. E. Urbas, On the expansion of starshaped hypersurfaces by symmetric functions of their principal curvatures, Math. Z., 205 (1990), 355-372.
doi: 10.1007/BF02571249.![]() ![]() ![]() |
[16] |
B. White, The size of the singular set in mean curvature flow of mean-convex sets, J. Amer. Math. Soc., 13 (2000), 665-695.
doi: 10.1090/S0894-0347-00-00338-6.![]() ![]() ![]() |