We consider a parametric semilinear Robin problem driven by the Laplacian plus an indefinite potential. The reaction term involves competing nonlinearities. More precisely, it is the sum of a parametric sublinear (concave) term and a superlinear (convex) term. The superlinearity is not expressed via the Ambrosetti-Rabinowitz condition. Instead, a more general hypothesis is used. We prove a bifurcation-type theorem describing the set of positive solutions as the parameter $\lambda > 0$ varies. We also show the existence of a minimal positive solution $\tilde{u}_\lambda$ and determine the monotonicity and continuity properties of the map $\lambda \mapsto \tilde{u}_\lambda$.
Citation: |
[1] |
S. Aizicovici, N. S. Papageorgiou and V. Staicu, Degree theory for operators of monotone type and nonlinear elliptic equations with inequality constraints, Memoirs Amer. Math. Soc., 196 (2008), pp. 70.
doi: 10.1090/memo/0915.![]() ![]() ![]() |
[2] |
A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543.
doi: 10.1006/jfan.1994.1078.![]() ![]() ![]() |
[3] |
A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381.
![]() ![]() |
[4] |
T. Bartsch and M. Willem, On an elliptic equation with concave and convex nonlinearities, Proc. Amer. Math. Soc., 123 (1995), 3555-3561.
doi: 10.2307/2161107.![]() ![]() ![]() |
[5] |
M. Filippakis and N. S. Papageorgiou, Multiple constant sign and nodal solutions for nonlinear elliptic equations with the p-Laplacian, J. Differential Equations, 245 (2008), 1883-1992.
doi: 10.1016/j.jde.2008.07.004.![]() ![]() ![]() |
[6] |
L. Gasinski and N. S. Papageorgiou, Nonlinear Analysis, Series in Mathematical Analysis and Applications, vol. 9, Chapman & Hall/CRC, Boca Raton, FL, 2006.
![]() ![]() |
[7] |
S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis. Volume Ⅰ: Theory, Mathematics and its Applications, vol. 419, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997.
doi: 10.1007/978-1-4615-4665-8\_17.![]() ![]() ![]() |
[8] |
S. Hu and N. S. Papageorgiou, Positive solutions for Robin problems with general potential and logistic reaction, Comm. Pure Appl. Anal., 15 (2016), 2489-2507.
doi: 10.3934/cpaa.2016046.![]() ![]() ![]() |
[9] |
S. Li, S. Wu and H. S. Zhou, Solutions to semilinear elliptic problems with combined nonlinearities, J. Differential Equations, 185 (2002), 200-224.
doi: 10.1006/jdeq.2001.4167.![]() ![]() ![]() |
[10] |
C. Li and C. Yang, The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of a p-Laplacian type without the Ambrosetti-Rabinowitz condition, Nonlinear Anal., 72 (2010), 4602-4613.
doi: 10.1016/j.na.2010.02.037.![]() ![]() ![]() |
[11] |
D. Motreanu, V. Motreanu and N. S. Papageorgiou, Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, Springer, New York, 2014.
doi: 10.1007/978-1-4614-9323-5.![]() ![]() ![]() |
[12] |
N. S. Papageorgiou and V. D. Rădulescu, Multiple solutions with precise sign for nonlinear parametric Robin problems, J. Differential Equations, 256 (2014), 2449-2479.
doi: 10.1016/j.jde.2014.01.010.![]() ![]() ![]() |
[13] |
N. S. Papageorgiou and V. D. Rădulescu, Neumann problems with indefinite and unbounded potential and concave terms, Proc. Amer. Math. Soc., 143 (2015), 4803-4816.
doi: 10.1090/proc/12600.![]() ![]() ![]() |
[14] |
N. S. Papageorgiou and V. D. Rădulescu, Multiplicity of solutions for resonant Neumann problems with an indefinite and unbounded potential, Trans. Amer. Math. Soc., 366 (2014), 8723-8756.
doi: 10.1090/S0002-9947-2014-06518-5.![]() ![]() ![]() |
[15] |
N. S. Papageorgiou and V. D. Rădulescu, Bifurcation of positive solutions for nonlinear nonhomogeneous Neumann and Robin problems with competing nonlinearities, Discrete Contin. Dyn. Syst., 35 (2015), 5003-5036.
doi: 10.3934/dcds.2015.35.5003.![]() ![]() ![]() |
[16] |
N. S. Papageorgiou and V. D. Rădulescu, Robin problems with indefinite, unbounded potential and reaction of arbitrary growth, Rev. Mat. Complut., 29 (2016), 91-126.
doi: 10.1007/s13163-015-0181-y.![]() ![]() ![]() |
[17] |
N. S. Papageorgiou, V. D. Rădulescu and D. D. Repovš, Positive solutions for perturbations of the Robin eigenvalue problem plus an indefinite potential, Discrete Contin. Dyn. Syst., 37 (2017), 2589-2618.
doi: 10.3934/dcds.2017111.![]() ![]() ![]() |
[18] |
N. S. Papageorgiou and G. Smyrlis, Positive solutions for parametric p-Laplacian equations, Comm. Pure Appl. Math., 15 (2016), 1545-1570.
doi: 10.3934/cpaa.2016002.![]() ![]() ![]() |
[19] |
V. D. Rădulescu and D. Repovš, Combined effects in nonlinear problems arising in the study of anisotropic continuous media, Nonlinear Anal., 75 (2012), 1524-1530.
doi: 10.1016/j.na.2011.01.037.![]() ![]() ![]() |
[20] |
X. Wang, Neumann problems of semilinear elliptic equations involving critical Sobolev exponents, J. Differential Equations, 93 (1991), 283-310.
doi: 10.1016/0022-0396(91)90014-Z.![]() ![]() ![]() |