July  2017, 16(4): 1331-1372. doi: 10.3934/cpaa.2017065

Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat

1. 

Systems Research Institute, Polish Academy of Sciences, Newelska 6, 01-447 Warsaw, Poland

2. 

Institute of Mathematics and Cryptology, Cybernetics Faculty, Military University of Technology, S. Kaliskiego 2, 00-908 Warsaw, Poland

3. 

Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-656 Warsaw, Poland

4. 

Institute of Mathematics and Cryptology, Cybernetics Faculty, Military University of Technology, S. Kaliskiego 2, 00-908 Warsaw, Poland

Received  April 2016 Revised  September 2016 Published  April 2017

A three-dimensional thermo-visco-elastic system for Kelvin-Voigt type material at small strains is considered. The system involves nonlinear temperature-dependent specific heat relevant in the limit of low temperature range. The existence of a unique global regular solution is proved without small data assumptions. The proof consists of two parts. First the existence of a local in time solution is proved by the Banach successive approximations method. Then a lower bound on temperature and global a priori estimates are derived with the help of the theory of anisotropic Sobolev spaces with a mixed norm. Such estimates allow to extend the local solution step by step in time. The paper generalizes the results of the previous author's publication in SIAM J. Math. Anal. 45, No. 4 (2013), pp. 1997–2045.

Citation: Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065
References:
[1]

O. V. Besov, V. P. Il'in and S. M. Nikolskij, Integral Representation of Functions and Theorems of Imbeddings, Nauka, Moscow, 1975 (in Russian). Google Scholar

[2]

D. Blanchard and O. Gulbé, Existence of a solution for a nonlinear system in thermoviscoelasticity, Adv. Differential Equations, 5 (2000), 1221-1252.   Google Scholar

[3]

E. Bonetti and G. Bonfanti, Existence and uniqueness of the solution to a 3D thermoelastic system, Electron. J. Differential Equations, (2003), 1-15.  Google Scholar

[4]

Y. S. Bugrov, Function spaces with mixed norm, Math. USSR. Izv., 5 (1971), 1145-1167.   Google Scholar

[5]

C. M. Dafermos, Global smooth solutions to the initial-boundary value problem for the equations of one-dimensional nonlinear thermoviscoelasticity, SIAM J. Math. Anal., 13 (1982), 397-408.  doi: 10.1137/0513029.  Google Scholar

[6]

C. M. Dafermos and L. Hsiao, Global smooth thermomechanical processes in one-dimensional nonlinear thermoviscoelasticity, Nonlinear Anal., 6 (1982), 435-454.  doi: 10.1016/0362-546X(82)90058-X.  Google Scholar

[7]

R. DenkM. Hieber and J. Prüss, Optimal Lp -Lq estimates for parabolic boundary value problems with inhomogeneous data, Math. Z., 257 (2007), 193-224.  doi: 10.1007/s00209-007-0120-9.  Google Scholar

[8]

C. Eck, J. Jarušek and M. Krbec, Unilateral Contact Problems: Variational Methods and Existence Theorems, Pure and Applied Mathematics, Chapman & Hall/CRC, Boca Raton, FL 2005. doi: 10.1201/9781420027365.  Google Scholar

[9]

M. FabrizioD. Giorgi and A. Morro, A continuum theory for first-order phase transitions based on the balance of structure order, Math. Methods Appl. Sci., 31 (2008), 627-653.  doi: 10.1002/mma.930.  Google Scholar

[10]

E. FeireislH. Petzeltová and E. Rocca, Existence of solutions to a phase transition model with microscopic movements, Math. Methods Appl. Sci., 32 (2009), 1345-1369.  doi: 10.1002/mma.1089.  Google Scholar

[11]

G. Francfort and P. M. Suquet, Homogenization and mechanical dissipation in thermoviscoelasticity, Arch. Ration. Mech. Anal., 96 (1986), 265-293.  doi: 10.1007/BF00251909.  Google Scholar

[12]

M. Frémond, Non-smooth Thermomechanics, Springer-Verlag, Berlin, 2002. doi: 10.1007/978-3-662-04800-9.  Google Scholar

[13]

J. A. Gawinecki, Global existence of solutions for non-small data to non-linear spherically symmetric thermoviscoelasticity, Math. Methods Appl. Sci., 26 (2003), 907-936.  doi: 10.1002/mma.406.  Google Scholar

[14]

J. A. Gawinecki and W. M. Zajączkowski, Global existence of solutions to the nonlinear thermoviscoelasticity system with small data, Top. Meth. Nonlin. Anal., 39 (2012), 263-284.   Google Scholar

[15]

J. A. Gawinecki and W. M. Zajączkowski, Global regular solutions to two-dimensional thermoviscoelasticity, Commun. Pure Appl. Anal. , to appear. doi: 10.3934/cpaa.2016.15.1009.  Google Scholar

[16]

K. K. Golovkin, On equivalent norms for fractional spaces, Amer. Math. Soc. Transl. Ser. 2, 81 (1969), 257-280.   Google Scholar

[17]

N. V. Krylov, The Calderon-Zygmund theorem and its application for parabolic equations, Algebra i Analiz, 13 (2001), 1-25.   Google Scholar

[18]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, Nauka, Moscow, 1967 (in Russian). Google Scholar

[19]

A. Miranville and G. Schimperna, Global solution to a phase transition model based on a microforce balance, J. Evol. Equ., 5 (2005), 253-276.  doi: 10.1007/s00028-005-0187-x.  Google Scholar

[20]

J. Nečas, Les Méthodes Directes en Théorie des Équations Elliptiques, Masson, Paris, 1967.  Google Scholar

[21]

I. Pawłlow, Three dimensional model of thermomechanical evolution of shape memory materials, Control Cybernet., 29 (2000), 341-365.   Google Scholar

[22]

I. Paw low and W. M. Zajączkowski, Unique solvability of a nonlinear thermoviscoelasticity system in Sobolev space with a mixed norm, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 441-466.  doi: 10.3934/dcdss.2011.4.441.  Google Scholar

[23]

I. Paw low and W. M. Zajączkowski, Global regular solutions to a Kelvin-Voigt type thermoviscoelastic system, SIAM J. Math. Anal., 45 (2013), 1997-2045.  doi: 10.1137/110859026.  Google Scholar

[24]

I. Paw low and A. Żochowski, Existence and uniqueness for a three-dimensional thermoelastic system, Dissertationes Math., 406 (2002), p.46. doi: 10.4064/dm406-0-1.  Google Scholar

[25]

R. Rossi and T. Roubíček, Thermodynamics and analysis of rate-independent adhesive contact at small strains, Nonlinear Anal., 74 (2011), 3159-3190.  doi: 10.1016/j.na.2011.01.031.  Google Scholar

[26]

T. Roubíček, Modelling of thermodynamics of martensitic transformation in shape memory alloys, Discrete Contin. Dyn. Syst. , Supplement (2007), 892-902.  Google Scholar

[27]

T. Roubíček, Thermo-viscoelasticity at small strains with L1-data, Quart. Appl. Math., 67 (2009), 47-71.  doi: 10.1090/S0033-569X-09-01094-3.  Google Scholar

[28]

T. Roubíček, Thermodynamics of rate-independent processes in viscous solids at small strains, SIAM J. Math. Anal., 42 (2010), 256-297.  doi: 10.1137/080729992.  Google Scholar

[29]

T. Roubíček, Nonlinearly coupled thermo-visco-elasticity, Nonlinear Differ. Equ. Appl., 20 (2013), 1243-1275.  doi: 10.1007/s00030-012-0207-9.  Google Scholar

[30]

Y. Shibata, Global in time existence of small solutions of non-linear thermoviscoelastic equations, Math. Methods Appl. Sci., 18 (1995), 871-895.  doi: 10.1002/mma.1670181104.  Google Scholar

[31]

M. Slemrod, Global existence, uniqueness and asymptotic stability of classical smooth solutions in one-dimensional non-linear thermoelasticity, Arch. Ration. Mech. Anal., 76 (1981), 97-133.  doi: 10.1007/BF00251248.  Google Scholar

[32]

V. A. Solonnikov, Estimates of solutions of the Stokes equations in S. L. Sobolev spaces with a mixed norm, Zap. Nauchn. Sem. S. Petersburg Otdel. Mat Inst. Steklov (POMI), 288 (2002), 204-231.  doi: 10.1023/B:JOTH.0000041480.38912.3a.  Google Scholar

[33]

V. A. Solonnikov, On boundary value problems for linear parabolic systems of differential equations of general type, Trudy MIAN, 83 (1965) (in Russian).  Google Scholar

[34]

W. von Wahl, The Equations of the Navier-Stokes and Abstract Parabolic Equations, Braunschweig, 1985. doi: 10.1007/978-3-663-13911-9.  Google Scholar

[35]

S. Y. YoshikawaI. Paw low and W. M. Zajączkowski, A quasilinear thermoviscoelastic system for shape memory alloys with temperature dependent specific heat, Commun. Pure Appl. Anal., 8 (2009), 1093-1115.  doi: 10.3934/cpaa.2009.8.1093.  Google Scholar

show all references

References:
[1]

O. V. Besov, V. P. Il'in and S. M. Nikolskij, Integral Representation of Functions and Theorems of Imbeddings, Nauka, Moscow, 1975 (in Russian). Google Scholar

[2]

D. Blanchard and O. Gulbé, Existence of a solution for a nonlinear system in thermoviscoelasticity, Adv. Differential Equations, 5 (2000), 1221-1252.   Google Scholar

[3]

E. Bonetti and G. Bonfanti, Existence and uniqueness of the solution to a 3D thermoelastic system, Electron. J. Differential Equations, (2003), 1-15.  Google Scholar

[4]

Y. S. Bugrov, Function spaces with mixed norm, Math. USSR. Izv., 5 (1971), 1145-1167.   Google Scholar

[5]

C. M. Dafermos, Global smooth solutions to the initial-boundary value problem for the equations of one-dimensional nonlinear thermoviscoelasticity, SIAM J. Math. Anal., 13 (1982), 397-408.  doi: 10.1137/0513029.  Google Scholar

[6]

C. M. Dafermos and L. Hsiao, Global smooth thermomechanical processes in one-dimensional nonlinear thermoviscoelasticity, Nonlinear Anal., 6 (1982), 435-454.  doi: 10.1016/0362-546X(82)90058-X.  Google Scholar

[7]

R. DenkM. Hieber and J. Prüss, Optimal Lp -Lq estimates for parabolic boundary value problems with inhomogeneous data, Math. Z., 257 (2007), 193-224.  doi: 10.1007/s00209-007-0120-9.  Google Scholar

[8]

C. Eck, J. Jarušek and M. Krbec, Unilateral Contact Problems: Variational Methods and Existence Theorems, Pure and Applied Mathematics, Chapman & Hall/CRC, Boca Raton, FL 2005. doi: 10.1201/9781420027365.  Google Scholar

[9]

M. FabrizioD. Giorgi and A. Morro, A continuum theory for first-order phase transitions based on the balance of structure order, Math. Methods Appl. Sci., 31 (2008), 627-653.  doi: 10.1002/mma.930.  Google Scholar

[10]

E. FeireislH. Petzeltová and E. Rocca, Existence of solutions to a phase transition model with microscopic movements, Math. Methods Appl. Sci., 32 (2009), 1345-1369.  doi: 10.1002/mma.1089.  Google Scholar

[11]

G. Francfort and P. M. Suquet, Homogenization and mechanical dissipation in thermoviscoelasticity, Arch. Ration. Mech. Anal., 96 (1986), 265-293.  doi: 10.1007/BF00251909.  Google Scholar

[12]

M. Frémond, Non-smooth Thermomechanics, Springer-Verlag, Berlin, 2002. doi: 10.1007/978-3-662-04800-9.  Google Scholar

[13]

J. A. Gawinecki, Global existence of solutions for non-small data to non-linear spherically symmetric thermoviscoelasticity, Math. Methods Appl. Sci., 26 (2003), 907-936.  doi: 10.1002/mma.406.  Google Scholar

[14]

J. A. Gawinecki and W. M. Zajączkowski, Global existence of solutions to the nonlinear thermoviscoelasticity system with small data, Top. Meth. Nonlin. Anal., 39 (2012), 263-284.   Google Scholar

[15]

J. A. Gawinecki and W. M. Zajączkowski, Global regular solutions to two-dimensional thermoviscoelasticity, Commun. Pure Appl. Anal. , to appear. doi: 10.3934/cpaa.2016.15.1009.  Google Scholar

[16]

K. K. Golovkin, On equivalent norms for fractional spaces, Amer. Math. Soc. Transl. Ser. 2, 81 (1969), 257-280.   Google Scholar

[17]

N. V. Krylov, The Calderon-Zygmund theorem and its application for parabolic equations, Algebra i Analiz, 13 (2001), 1-25.   Google Scholar

[18]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, Nauka, Moscow, 1967 (in Russian). Google Scholar

[19]

A. Miranville and G. Schimperna, Global solution to a phase transition model based on a microforce balance, J. Evol. Equ., 5 (2005), 253-276.  doi: 10.1007/s00028-005-0187-x.  Google Scholar

[20]

J. Nečas, Les Méthodes Directes en Théorie des Équations Elliptiques, Masson, Paris, 1967.  Google Scholar

[21]

I. Pawłlow, Three dimensional model of thermomechanical evolution of shape memory materials, Control Cybernet., 29 (2000), 341-365.   Google Scholar

[22]

I. Paw low and W. M. Zajączkowski, Unique solvability of a nonlinear thermoviscoelasticity system in Sobolev space with a mixed norm, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 441-466.  doi: 10.3934/dcdss.2011.4.441.  Google Scholar

[23]

I. Paw low and W. M. Zajączkowski, Global regular solutions to a Kelvin-Voigt type thermoviscoelastic system, SIAM J. Math. Anal., 45 (2013), 1997-2045.  doi: 10.1137/110859026.  Google Scholar

[24]

I. Paw low and A. Żochowski, Existence and uniqueness for a three-dimensional thermoelastic system, Dissertationes Math., 406 (2002), p.46. doi: 10.4064/dm406-0-1.  Google Scholar

[25]

R. Rossi and T. Roubíček, Thermodynamics and analysis of rate-independent adhesive contact at small strains, Nonlinear Anal., 74 (2011), 3159-3190.  doi: 10.1016/j.na.2011.01.031.  Google Scholar

[26]

T. Roubíček, Modelling of thermodynamics of martensitic transformation in shape memory alloys, Discrete Contin. Dyn. Syst. , Supplement (2007), 892-902.  Google Scholar

[27]

T. Roubíček, Thermo-viscoelasticity at small strains with L1-data, Quart. Appl. Math., 67 (2009), 47-71.  doi: 10.1090/S0033-569X-09-01094-3.  Google Scholar

[28]

T. Roubíček, Thermodynamics of rate-independent processes in viscous solids at small strains, SIAM J. Math. Anal., 42 (2010), 256-297.  doi: 10.1137/080729992.  Google Scholar

[29]

T. Roubíček, Nonlinearly coupled thermo-visco-elasticity, Nonlinear Differ. Equ. Appl., 20 (2013), 1243-1275.  doi: 10.1007/s00030-012-0207-9.  Google Scholar

[30]

Y. Shibata, Global in time existence of small solutions of non-linear thermoviscoelastic equations, Math. Methods Appl. Sci., 18 (1995), 871-895.  doi: 10.1002/mma.1670181104.  Google Scholar

[31]

M. Slemrod, Global existence, uniqueness and asymptotic stability of classical smooth solutions in one-dimensional non-linear thermoelasticity, Arch. Ration. Mech. Anal., 76 (1981), 97-133.  doi: 10.1007/BF00251248.  Google Scholar

[32]

V. A. Solonnikov, Estimates of solutions of the Stokes equations in S. L. Sobolev spaces with a mixed norm, Zap. Nauchn. Sem. S. Petersburg Otdel. Mat Inst. Steklov (POMI), 288 (2002), 204-231.  doi: 10.1023/B:JOTH.0000041480.38912.3a.  Google Scholar

[33]

V. A. Solonnikov, On boundary value problems for linear parabolic systems of differential equations of general type, Trudy MIAN, 83 (1965) (in Russian).  Google Scholar

[34]

W. von Wahl, The Equations of the Navier-Stokes and Abstract Parabolic Equations, Braunschweig, 1985. doi: 10.1007/978-3-663-13911-9.  Google Scholar

[35]

S. Y. YoshikawaI. Paw low and W. M. Zajączkowski, A quasilinear thermoviscoelastic system for shape memory alloys with temperature dependent specific heat, Commun. Pure Appl. Anal., 8 (2009), 1093-1115.  doi: 10.3934/cpaa.2009.8.1093.  Google Scholar

[1]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[2]

Jinyi Sun, Zunwei Fu, Yue Yin, Minghua Yang. Global existence and Gevrey regularity to the Navier-Stokes-Nernst-Planck-Poisson system in critical Besov-Morrey spaces. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3409-3425. doi: 10.3934/dcdsb.2020237

[3]

Harumi Hattori, Aesha Lagha. Global existence and decay rates of the solutions for a chemotaxis system with Lotka-Volterra type model for chemoattractant and repellent. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021071

[4]

Fabio Sperotto Bemfica, Marcelo Mendes Disconzi, Casey Rodriguez, Yuanzhen Shao. Local existence and uniqueness in Sobolev spaces for first-order conformal causal relativistic viscous hydrodynamics. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021069

[5]

Khalid Latrach, Hssaine Oummi, Ahmed Zeghal. Existence results for nonlinear mono-energetic singular transport equations: $ L^p $-spaces. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021028

[6]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

[7]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, 2021, 15 (3) : 539-554. doi: 10.3934/ipi.2021004

[8]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[9]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 955-974. doi: 10.3934/cpaa.2021001

[10]

Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021091

[11]

Miroslav Bulíček, Victoria Patel, Endre Süli, Yasemin Şengül. Existence of large-data global weak solutions to a model of a strain-limiting viscoelastic body. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021053

[12]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[13]

Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198

[14]

Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, , () : -. doi: 10.3934/era.2021016

[15]

Tadahiro Oh, Yuzhao Wang. On global well-posedness of the modified KdV equation in modulation spaces. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2971-2992. doi: 10.3934/dcds.2020393

[16]

Xiaorong Luo, Anmin Mao, Yanbin Sang. Nonlinear Choquard equations with Hardy-Littlewood-Sobolev critical exponents. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021022

[17]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[18]

Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021056

[19]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[20]

Raphaël Côte, Frédéric Valet. Polynomial growth of high sobolev norms of solutions to the Zakharov-Kuznetsov equation. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1039-1058. doi: 10.3934/cpaa.2021005

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (41)
  • HTML views (51)
  • Cited by (0)

Other articles
by authors

[Back to Top]