July  2017, 16(4): 1331-1372. doi: 10.3934/cpaa.2017065

Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat

1. 

Systems Research Institute, Polish Academy of Sciences, Newelska 6, 01-447 Warsaw, Poland

2. 

Institute of Mathematics and Cryptology, Cybernetics Faculty, Military University of Technology, S. Kaliskiego 2, 00-908 Warsaw, Poland

3. 

Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-656 Warsaw, Poland

4. 

Institute of Mathematics and Cryptology, Cybernetics Faculty, Military University of Technology, S. Kaliskiego 2, 00-908 Warsaw, Poland

Received  April 2016 Revised  September 2016 Published  April 2017

A three-dimensional thermo-visco-elastic system for Kelvin-Voigt type material at small strains is considered. The system involves nonlinear temperature-dependent specific heat relevant in the limit of low temperature range. The existence of a unique global regular solution is proved without small data assumptions. The proof consists of two parts. First the existence of a local in time solution is proved by the Banach successive approximations method. Then a lower bound on temperature and global a priori estimates are derived with the help of the theory of anisotropic Sobolev spaces with a mixed norm. Such estimates allow to extend the local solution step by step in time. The paper generalizes the results of the previous author's publication in SIAM J. Math. Anal. 45, No. 4 (2013), pp. 1997–2045.

Citation: Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065
References:
[1]

O. V. Besov, V. P. Il'in and S. M. Nikolskij, Integral Representation of Functions and Theorems of Imbeddings, Nauka, Moscow, 1975 (in Russian).

[2]

D. Blanchard and O. Gulbé, Existence of a solution for a nonlinear system in thermoviscoelasticity, Adv. Differential Equations, 5 (2000), 1221-1252. 

[3]

E. Bonetti and G. Bonfanti, Existence and uniqueness of the solution to a 3D thermoelastic system, Electron. J. Differential Equations, (2003), 1-15.

[4]

Y. S. Bugrov, Function spaces with mixed norm, Math. USSR. Izv., 5 (1971), 1145-1167. 

[5]

C. M. Dafermos, Global smooth solutions to the initial-boundary value problem for the equations of one-dimensional nonlinear thermoviscoelasticity, SIAM J. Math. Anal., 13 (1982), 397-408.  doi: 10.1137/0513029.

[6]

C. M. Dafermos and L. Hsiao, Global smooth thermomechanical processes in one-dimensional nonlinear thermoviscoelasticity, Nonlinear Anal., 6 (1982), 435-454.  doi: 10.1016/0362-546X(82)90058-X.

[7]

R. DenkM. Hieber and J. Prüss, Optimal Lp -Lq estimates for parabolic boundary value problems with inhomogeneous data, Math. Z., 257 (2007), 193-224.  doi: 10.1007/s00209-007-0120-9.

[8]

C. Eck, J. Jarušek and M. Krbec, Unilateral Contact Problems: Variational Methods and Existence Theorems, Pure and Applied Mathematics, Chapman & Hall/CRC, Boca Raton, FL 2005. doi: 10.1201/9781420027365.

[9]

M. FabrizioD. Giorgi and A. Morro, A continuum theory for first-order phase transitions based on the balance of structure order, Math. Methods Appl. Sci., 31 (2008), 627-653.  doi: 10.1002/mma.930.

[10]

E. FeireislH. Petzeltová and E. Rocca, Existence of solutions to a phase transition model with microscopic movements, Math. Methods Appl. Sci., 32 (2009), 1345-1369.  doi: 10.1002/mma.1089.

[11]

G. Francfort and P. M. Suquet, Homogenization and mechanical dissipation in thermoviscoelasticity, Arch. Ration. Mech. Anal., 96 (1986), 265-293.  doi: 10.1007/BF00251909.

[12]

M. Frémond, Non-smooth Thermomechanics, Springer-Verlag, Berlin, 2002. doi: 10.1007/978-3-662-04800-9.

[13]

J. A. Gawinecki, Global existence of solutions for non-small data to non-linear spherically symmetric thermoviscoelasticity, Math. Methods Appl. Sci., 26 (2003), 907-936.  doi: 10.1002/mma.406.

[14]

J. A. Gawinecki and W. M. Zajączkowski, Global existence of solutions to the nonlinear thermoviscoelasticity system with small data, Top. Meth. Nonlin. Anal., 39 (2012), 263-284. 

[15]

J. A. Gawinecki and W. M. Zajączkowski, Global regular solutions to two-dimensional thermoviscoelasticity, Commun. Pure Appl. Anal. , to appear. doi: 10.3934/cpaa.2016.15.1009.

[16]

K. K. Golovkin, On equivalent norms for fractional spaces, Amer. Math. Soc. Transl. Ser. 2, 81 (1969), 257-280. 

[17]

N. V. Krylov, The Calderon-Zygmund theorem and its application for parabolic equations, Algebra i Analiz, 13 (2001), 1-25. 

[18]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, Nauka, Moscow, 1967 (in Russian).

[19]

A. Miranville and G. Schimperna, Global solution to a phase transition model based on a microforce balance, J. Evol. Equ., 5 (2005), 253-276.  doi: 10.1007/s00028-005-0187-x.

[20]

J. Nečas, Les Méthodes Directes en Théorie des Équations Elliptiques, Masson, Paris, 1967.

[21]

I. Pawłlow, Three dimensional model of thermomechanical evolution of shape memory materials, Control Cybernet., 29 (2000), 341-365. 

[22]

I. Paw low and W. M. Zajączkowski, Unique solvability of a nonlinear thermoviscoelasticity system in Sobolev space with a mixed norm, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 441-466.  doi: 10.3934/dcdss.2011.4.441.

[23]

I. Paw low and W. M. Zajączkowski, Global regular solutions to a Kelvin-Voigt type thermoviscoelastic system, SIAM J. Math. Anal., 45 (2013), 1997-2045.  doi: 10.1137/110859026.

[24]

I. Paw low and A. Żochowski, Existence and uniqueness for a three-dimensional thermoelastic system, Dissertationes Math., 406 (2002), p.46. doi: 10.4064/dm406-0-1.

[25]

R. Rossi and T. Roubíček, Thermodynamics and analysis of rate-independent adhesive contact at small strains, Nonlinear Anal., 74 (2011), 3159-3190.  doi: 10.1016/j.na.2011.01.031.

[26]

T. Roubíček, Modelling of thermodynamics of martensitic transformation in shape memory alloys, Discrete Contin. Dyn. Syst. , Supplement (2007), 892-902.

[27]

T. Roubíček, Thermo-viscoelasticity at small strains with L1-data, Quart. Appl. Math., 67 (2009), 47-71.  doi: 10.1090/S0033-569X-09-01094-3.

[28]

T. Roubíček, Thermodynamics of rate-independent processes in viscous solids at small strains, SIAM J. Math. Anal., 42 (2010), 256-297.  doi: 10.1137/080729992.

[29]

T. Roubíček, Nonlinearly coupled thermo-visco-elasticity, Nonlinear Differ. Equ. Appl., 20 (2013), 1243-1275.  doi: 10.1007/s00030-012-0207-9.

[30]

Y. Shibata, Global in time existence of small solutions of non-linear thermoviscoelastic equations, Math. Methods Appl. Sci., 18 (1995), 871-895.  doi: 10.1002/mma.1670181104.

[31]

M. Slemrod, Global existence, uniqueness and asymptotic stability of classical smooth solutions in one-dimensional non-linear thermoelasticity, Arch. Ration. Mech. Anal., 76 (1981), 97-133.  doi: 10.1007/BF00251248.

[32]

V. A. Solonnikov, Estimates of solutions of the Stokes equations in S. L. Sobolev spaces with a mixed norm, Zap. Nauchn. Sem. S. Petersburg Otdel. Mat Inst. Steklov (POMI), 288 (2002), 204-231.  doi: 10.1023/B:JOTH.0000041480.38912.3a.

[33]

V. A. Solonnikov, On boundary value problems for linear parabolic systems of differential equations of general type, Trudy MIAN, 83 (1965) (in Russian).

[34]

W. von Wahl, The Equations of the Navier-Stokes and Abstract Parabolic Equations, Braunschweig, 1985. doi: 10.1007/978-3-663-13911-9.

[35]

S. Y. YoshikawaI. Paw low and W. M. Zajączkowski, A quasilinear thermoviscoelastic system for shape memory alloys with temperature dependent specific heat, Commun. Pure Appl. Anal., 8 (2009), 1093-1115.  doi: 10.3934/cpaa.2009.8.1093.

show all references

References:
[1]

O. V. Besov, V. P. Il'in and S. M. Nikolskij, Integral Representation of Functions and Theorems of Imbeddings, Nauka, Moscow, 1975 (in Russian).

[2]

D. Blanchard and O. Gulbé, Existence of a solution for a nonlinear system in thermoviscoelasticity, Adv. Differential Equations, 5 (2000), 1221-1252. 

[3]

E. Bonetti and G. Bonfanti, Existence and uniqueness of the solution to a 3D thermoelastic system, Electron. J. Differential Equations, (2003), 1-15.

[4]

Y. S. Bugrov, Function spaces with mixed norm, Math. USSR. Izv., 5 (1971), 1145-1167. 

[5]

C. M. Dafermos, Global smooth solutions to the initial-boundary value problem for the equations of one-dimensional nonlinear thermoviscoelasticity, SIAM J. Math. Anal., 13 (1982), 397-408.  doi: 10.1137/0513029.

[6]

C. M. Dafermos and L. Hsiao, Global smooth thermomechanical processes in one-dimensional nonlinear thermoviscoelasticity, Nonlinear Anal., 6 (1982), 435-454.  doi: 10.1016/0362-546X(82)90058-X.

[7]

R. DenkM. Hieber and J. Prüss, Optimal Lp -Lq estimates for parabolic boundary value problems with inhomogeneous data, Math. Z., 257 (2007), 193-224.  doi: 10.1007/s00209-007-0120-9.

[8]

C. Eck, J. Jarušek and M. Krbec, Unilateral Contact Problems: Variational Methods and Existence Theorems, Pure and Applied Mathematics, Chapman & Hall/CRC, Boca Raton, FL 2005. doi: 10.1201/9781420027365.

[9]

M. FabrizioD. Giorgi and A. Morro, A continuum theory for first-order phase transitions based on the balance of structure order, Math. Methods Appl. Sci., 31 (2008), 627-653.  doi: 10.1002/mma.930.

[10]

E. FeireislH. Petzeltová and E. Rocca, Existence of solutions to a phase transition model with microscopic movements, Math. Methods Appl. Sci., 32 (2009), 1345-1369.  doi: 10.1002/mma.1089.

[11]

G. Francfort and P. M. Suquet, Homogenization and mechanical dissipation in thermoviscoelasticity, Arch. Ration. Mech. Anal., 96 (1986), 265-293.  doi: 10.1007/BF00251909.

[12]

M. Frémond, Non-smooth Thermomechanics, Springer-Verlag, Berlin, 2002. doi: 10.1007/978-3-662-04800-9.

[13]

J. A. Gawinecki, Global existence of solutions for non-small data to non-linear spherically symmetric thermoviscoelasticity, Math. Methods Appl. Sci., 26 (2003), 907-936.  doi: 10.1002/mma.406.

[14]

J. A. Gawinecki and W. M. Zajączkowski, Global existence of solutions to the nonlinear thermoviscoelasticity system with small data, Top. Meth. Nonlin. Anal., 39 (2012), 263-284. 

[15]

J. A. Gawinecki and W. M. Zajączkowski, Global regular solutions to two-dimensional thermoviscoelasticity, Commun. Pure Appl. Anal. , to appear. doi: 10.3934/cpaa.2016.15.1009.

[16]

K. K. Golovkin, On equivalent norms for fractional spaces, Amer. Math. Soc. Transl. Ser. 2, 81 (1969), 257-280. 

[17]

N. V. Krylov, The Calderon-Zygmund theorem and its application for parabolic equations, Algebra i Analiz, 13 (2001), 1-25. 

[18]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, Nauka, Moscow, 1967 (in Russian).

[19]

A. Miranville and G. Schimperna, Global solution to a phase transition model based on a microforce balance, J. Evol. Equ., 5 (2005), 253-276.  doi: 10.1007/s00028-005-0187-x.

[20]

J. Nečas, Les Méthodes Directes en Théorie des Équations Elliptiques, Masson, Paris, 1967.

[21]

I. Pawłlow, Three dimensional model of thermomechanical evolution of shape memory materials, Control Cybernet., 29 (2000), 341-365. 

[22]

I. Paw low and W. M. Zajączkowski, Unique solvability of a nonlinear thermoviscoelasticity system in Sobolev space with a mixed norm, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 441-466.  doi: 10.3934/dcdss.2011.4.441.

[23]

I. Paw low and W. M. Zajączkowski, Global regular solutions to a Kelvin-Voigt type thermoviscoelastic system, SIAM J. Math. Anal., 45 (2013), 1997-2045.  doi: 10.1137/110859026.

[24]

I. Paw low and A. Żochowski, Existence and uniqueness for a three-dimensional thermoelastic system, Dissertationes Math., 406 (2002), p.46. doi: 10.4064/dm406-0-1.

[25]

R. Rossi and T. Roubíček, Thermodynamics and analysis of rate-independent adhesive contact at small strains, Nonlinear Anal., 74 (2011), 3159-3190.  doi: 10.1016/j.na.2011.01.031.

[26]

T. Roubíček, Modelling of thermodynamics of martensitic transformation in shape memory alloys, Discrete Contin. Dyn. Syst. , Supplement (2007), 892-902.

[27]

T. Roubíček, Thermo-viscoelasticity at small strains with L1-data, Quart. Appl. Math., 67 (2009), 47-71.  doi: 10.1090/S0033-569X-09-01094-3.

[28]

T. Roubíček, Thermodynamics of rate-independent processes in viscous solids at small strains, SIAM J. Math. Anal., 42 (2010), 256-297.  doi: 10.1137/080729992.

[29]

T. Roubíček, Nonlinearly coupled thermo-visco-elasticity, Nonlinear Differ. Equ. Appl., 20 (2013), 1243-1275.  doi: 10.1007/s00030-012-0207-9.

[30]

Y. Shibata, Global in time existence of small solutions of non-linear thermoviscoelastic equations, Math. Methods Appl. Sci., 18 (1995), 871-895.  doi: 10.1002/mma.1670181104.

[31]

M. Slemrod, Global existence, uniqueness and asymptotic stability of classical smooth solutions in one-dimensional non-linear thermoelasticity, Arch. Ration. Mech. Anal., 76 (1981), 97-133.  doi: 10.1007/BF00251248.

[32]

V. A. Solonnikov, Estimates of solutions of the Stokes equations in S. L. Sobolev spaces with a mixed norm, Zap. Nauchn. Sem. S. Petersburg Otdel. Mat Inst. Steklov (POMI), 288 (2002), 204-231.  doi: 10.1023/B:JOTH.0000041480.38912.3a.

[33]

V. A. Solonnikov, On boundary value problems for linear parabolic systems of differential equations of general type, Trudy MIAN, 83 (1965) (in Russian).

[34]

W. von Wahl, The Equations of the Navier-Stokes and Abstract Parabolic Equations, Braunschweig, 1985. doi: 10.1007/978-3-663-13911-9.

[35]

S. Y. YoshikawaI. Paw low and W. M. Zajączkowski, A quasilinear thermoviscoelastic system for shape memory alloys with temperature dependent specific heat, Commun. Pure Appl. Anal., 8 (2009), 1093-1115.  doi: 10.3934/cpaa.2009.8.1093.

[1]

Zhong-Jie Han, Zhuangyi Liu, Jing Wang. Sharper and finer energy decay rate for an elastic string with localized Kelvin-Voigt damping. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1455-1467. doi: 10.3934/dcdss.2022031

[2]

Irena Pawłow, Wojciech M. Zajączkowski. Unique solvability of a nonlinear thermoviscoelasticity system in Sobolev space with a mixed norm. Discrete and Continuous Dynamical Systems - S, 2011, 4 (2) : 441-466. doi: 10.3934/dcdss.2011.4.441

[3]

Miroslav Bulíček, Josef Málek, K. R. Rajagopal. On Kelvin-Voigt model and its generalizations. Evolution Equations and Control Theory, 2012, 1 (1) : 17-42. doi: 10.3934/eect.2012.1.17

[4]

Manil T. Mohan. On the three dimensional Kelvin-Voigt fluids: global solvability, exponential stability and exact controllability of Galerkin approximations. Evolution Equations and Control Theory, 2020, 9 (2) : 301-339. doi: 10.3934/eect.2020007

[5]

Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations and Control Theory, 2022, 11 (1) : 125-167. doi: 10.3934/eect.2020105

[6]

Xiaoqiang Dai, Wenke Li. Non-global solution for visco-elastic dynamical system with nonlinear source term in control problem. Electronic Research Archive, 2021, 29 (6) : 4087-4098. doi: 10.3934/era.2021073

[7]

Louis Tebou. Stabilization of some elastodynamic systems with localized Kelvin-Voigt damping. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 7117-7136. doi: 10.3934/dcds.2016110

[8]

Mikhail Turbin, Anastasiia Ustiuzhaninova. Pullback attractors for weak solution to modified Kelvin-Voigt model. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022011

[9]

Ahmed Bchatnia, Nadia Souayeh. Eventual differentiability of coupled wave equations with local Kelvin-Voigt damping. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1317-1338. doi: 10.3934/dcdss.2022098

[10]

Maria-Magdalena Boureanu, Andaluzia Matei, Mircea Sofonea. Analysis of a contact problem for electro-elastic-visco-plastic materials. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1185-1203. doi: 10.3934/cpaa.2012.11.1185

[11]

Fathi Hassine. Asymptotic behavior of the transmission Euler-Bernoulli plate and wave equation with a localized Kelvin-Voigt damping. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1757-1774. doi: 10.3934/dcdsb.2016021

[12]

Xiaobin Yao, Qiaozhen Ma, Tingting Liu. Asymptotic behavior for stochastic plate equations with rotational inertia and Kelvin-Voigt dissipative term on unbounded domains. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1889-1917. doi: 10.3934/dcdsb.2018247

[13]

Serge Nicaise, Cristina Pignotti. Stability of the wave equation with localized Kelvin-Voigt damping and boundary delay feedback. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 791-813. doi: 10.3934/dcdss.2016029

[14]

Robert E. Miller. Homogenization of time-dependent systems with Kelvin-Voigt damping by two-scale convergence. Discrete and Continuous Dynamical Systems, 1995, 1 (4) : 485-502. doi: 10.3934/dcds.1995.1.485

[15]

Peter Weidemaier. Maximal regularity for parabolic equations with inhomogeneous boundary conditions in Sobolev spaces with mixed $L_p$-norm. Electronic Research Announcements, 2002, 8: 47-51.

[16]

Khalid Addi, Oanh Chau, Daniel Goeleven. On some frictional contact problems with velocity condition for elastic and visco-elastic materials. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1039-1051. doi: 10.3934/dcds.2011.31.1039

[17]

Ali Wehbe, Rayan Nasser, Nahla Noun. Stability of N-D transmission problem in viscoelasticity with localized Kelvin-Voigt damping under different types of geometric conditions. Mathematical Control and Related Fields, 2021, 11 (4) : 885-904. doi: 10.3934/mcrf.2020050

[18]

Mohammad Akil, Ibtissam Issa, Ali Wehbe. Energy decay of some boundary coupled systems involving wave\ Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping. Mathematical Control and Related Fields, 2021  doi: 10.3934/mcrf.2021059

[19]

Marita Thomas, Sven Tornquist. Discrete approximation of dynamic phase-field fracture in visco-elastic materials. Discrete and Continuous Dynamical Systems - S, 2021, 14 (11) : 3865-3924. doi: 10.3934/dcdss.2021067

[20]

Roger Grimshaw, Dmitry Pelinovsky. Global existence of small-norm solutions in the reduced Ostrovsky equation. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 557-566. doi: 10.3934/dcds.2014.34.557

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (79)
  • HTML views (53)
  • Cited by (0)

Other articles
by authors

[Back to Top]