July  2017, 16(4): 1493-1516. doi: 10.3934/cpaa.2017071

Asymptotic behavior of Dirichlet eigenvalues on a body coated by functionally graded material

1. 

Center for Partial Differential Equations, East China Normal University, 500 Dongchuan Road, Minhang 200241, Shanghai, China

2. 

School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, China

Received  October 2016 Revised  December 2016 Published  April 2017

We consider the physical problem of protecting a thermally conducting body from overheating by thermal barrier coatings on a bounded domain, which has two components with a thin coating surrounding the body (of metallic nature), subject to the Dirichlet boundary condition. The coating is composed of two layers, the pure ceramic part and the mixed part. The latter is assumed to be functionally graded material (FGM) that is meant to make a smooth transition from being metallic to being ceramic. The thermal tensor $A$ is isotropic on the body, and anisotropic on the coating; and the size of thermal tensor may differ significantly in these components. Eigenfunction expansion of the interior temperature function indicates that small eigenvalues of the elliptic operator $u\mapsto -\nabla\cdot \left(A\nabla u\right)$ are desirable for the insulation of the body. Therefore, we are motivated to study the asymptotic behavior of the eigenpairs of the Dirichelt eigenvalue problem, as the thickness of the coating shrinks. Our results greatly generalize those by Rosencrans and Wang [8] where the case of single coating layer is considered. In particular, we find new optimal scaling relationship between the thickness of the coating and its thermal conductivity that guarantees at least the principal eigenvalue is small for any general FGMs.

Citation: Huicong Li, Jingyu Li. Asymptotic behavior of Dirichlet eigenvalues on a body coated by functionally graded material. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1493-1516. doi: 10.3934/cpaa.2017071
References:
[1]

J. BergerP. MartinV. Mantic and L. Gray, Fundamental solution for steady-state heat transfer in an exponentially graded anisotropic material, Z. angew. Math. Phys., 56 (2005), 293-303.  doi: 10.1007/s00033-004-1131-6.

[2]

A. Friedman, Reinforcement of the principal eigenvalue of an elliptic operator, Arch. Rational Mech. Anal., 73 (1980), 1-17.  doi: 10.1007/BF00283252.

[3]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Third Edition, Springer-Verlag, Berlin, 1998.

[4]

L. Tartar, An Introduction to the Homogenization Method in Optimal Design, Lecture Notes in Mathematics, 1740, Springer Verlag, 2000. doi: 10.1007/BFb0106742.

[5]

H. Li, Effective boundary conditions of the heat equation on a body coated by functionally graded material, Discrete Contin. Dyn. Syst., 36 (2016), 1415-1430.  doi: 10.3934/dcds.2016.36.1415.

[6]

J. LiS. RosencransX. Wang and K. Zhang, Asymptotic Analysis of a Dirichlet problem for the heat equation on a coated body, Proc. Amer. Math. Soc., 137 (2008), 1711-1721.  doi: 10.1090/S0002-9939-08-09766-9.

[7]

M. Mahamood, T. Akinlabi, M. Shukal and S. Pityana, Functionally Graded Material: An Overview, Proceedings of the World Congress on Engineering, WCE 2012.

[8]

S. Rosencrans and X. Wang, Suppression of the Dirichlet eigenvalues of a coated body, SIAM J. Appl. Math. , 66 (2006), 1895-1916; Corrigendum, SIAM J. Appl. Math. , 68 (2008), 1202. doi: 10.1137/040621181.

[9]

J. Wessel, Handbook of Advanced Materials: Enabling New Design, J. Wiley, New Jersey, 2004.

[10]

G. ZhangS. RosencransX. Wang and K. Zhang, Estimating thermal insulating ability of anisotropic coatings via Robin eigenvalues and eigenfunctions, Discrete Contin. Dyn. Sys., 25 (2009), 1061-1079.  doi: 10.3934/dcds.2009.25.1061.

[11]

X. ZhengM. G. ForestR. LiptonR. Zhou and Q. Wang, Exact scaling laws for electrical conducting properties of nematic polymer nano-composite monodomains, Adv. Funct. Math., 15 (2005), 627-638.  doi: 10.1007/s00161-006-0032-7.

show all references

References:
[1]

J. BergerP. MartinV. Mantic and L. Gray, Fundamental solution for steady-state heat transfer in an exponentially graded anisotropic material, Z. angew. Math. Phys., 56 (2005), 293-303.  doi: 10.1007/s00033-004-1131-6.

[2]

A. Friedman, Reinforcement of the principal eigenvalue of an elliptic operator, Arch. Rational Mech. Anal., 73 (1980), 1-17.  doi: 10.1007/BF00283252.

[3]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Third Edition, Springer-Verlag, Berlin, 1998.

[4]

L. Tartar, An Introduction to the Homogenization Method in Optimal Design, Lecture Notes in Mathematics, 1740, Springer Verlag, 2000. doi: 10.1007/BFb0106742.

[5]

H. Li, Effective boundary conditions of the heat equation on a body coated by functionally graded material, Discrete Contin. Dyn. Syst., 36 (2016), 1415-1430.  doi: 10.3934/dcds.2016.36.1415.

[6]

J. LiS. RosencransX. Wang and K. Zhang, Asymptotic Analysis of a Dirichlet problem for the heat equation on a coated body, Proc. Amer. Math. Soc., 137 (2008), 1711-1721.  doi: 10.1090/S0002-9939-08-09766-9.

[7]

M. Mahamood, T. Akinlabi, M. Shukal and S. Pityana, Functionally Graded Material: An Overview, Proceedings of the World Congress on Engineering, WCE 2012.

[8]

S. Rosencrans and X. Wang, Suppression of the Dirichlet eigenvalues of a coated body, SIAM J. Appl. Math. , 66 (2006), 1895-1916; Corrigendum, SIAM J. Appl. Math. , 68 (2008), 1202. doi: 10.1137/040621181.

[9]

J. Wessel, Handbook of Advanced Materials: Enabling New Design, J. Wiley, New Jersey, 2004.

[10]

G. ZhangS. RosencransX. Wang and K. Zhang, Estimating thermal insulating ability of anisotropic coatings via Robin eigenvalues and eigenfunctions, Discrete Contin. Dyn. Sys., 25 (2009), 1061-1079.  doi: 10.3934/dcds.2009.25.1061.

[11]

X. ZhengM. G. ForestR. LiptonR. Zhou and Q. Wang, Exact scaling laws for electrical conducting properties of nematic polymer nano-composite monodomains, Adv. Funct. Math., 15 (2005), 627-638.  doi: 10.1007/s00161-006-0032-7.

Figure 1.  $\Omega=\overline\Omega_1\cup \Omega_2$. The coating $\Omega_2$ is uniformly thick with thickness $\delta$
Figure 2.  $\Omega=\overline{\Omega_1}\cup \Omega_2$. The coating $\Omega_2$ is uniformly thick with thickness $\delta$ and the mixed part $\Omega_3$ has thickness $\delta_1\in(0, \delta)$
[1]

Huicong Li. Effective boundary conditions of the heat equation on a body coated by functionally graded material. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1415-1430. doi: 10.3934/dcds.2016.36.1415

[2]

Micol Amar, Roberto Gianni. Laplace-Beltrami operator for the heat conduction in polymer coating of electronic devices. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1739-1756. doi: 10.3934/dcdsb.2018078

[3]

Sunil Kumar, Saikat Ranjan Maity, Lokeswar Patnaik. A novel BWM integrated MABAC decision-making approach to optimize the wear parameter of CrN/TiAlSiN coating. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022061

[4]

Ruixue Zhao, Jinyan Fan. Quadratic tensor eigenvalue complementarity problems. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022073

[5]

Steve Rosencrans, Xuefeng Wang, Shan Zhao. Estimating eigenvalues of an anisotropic thermal tensor from transient thermal probe measurements. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5441-5455. doi: 10.3934/dcds.2013.33.5441

[6]

Rejeb Hadiji, Ken Shirakawa. Asymptotic analysis for micromagnetics of thin films governed by indefinite material coefficients. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1345-1361. doi: 10.3934/cpaa.2010.9.1345

[7]

Mustapha El Jarroudi, Youness Filali, Aadil Lahrouz, Mustapha Er-Riani, Adel Settati. Asymptotic analysis of an elastic material reinforced with thin fractal strips. Networks and Heterogeneous Media, 2022, 17 (1) : 47-72. doi: 10.3934/nhm.2021023

[8]

Wanbin Tong, Hongjin He, Chen Ling, Liqun Qi. A nonmonotone spectral projected gradient method for tensor eigenvalue complementarity problems. Numerical Algebra, Control and Optimization, 2020, 10 (4) : 425-437. doi: 10.3934/naco.2020042

[9]

Rola Kiwan, Ahmad El Soufi. Where to place a spherical obstacle so as to maximize the second Dirichlet eigenvalue. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1193-1201. doi: 10.3934/cpaa.2008.7.1193

[10]

Wolfgang Arendt, Rafe Mazzeo. Friedlander's eigenvalue inequalities and the Dirichlet-to-Neumann semigroup. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2201-2212. doi: 10.3934/cpaa.2012.11.2201

[11]

François Alouges, Antonio DeSimone, Luca Heltai, Aline Lefebvre-Lepot, Benoît Merlet. Optimally swimming stokesian robots. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1189-1215. doi: 10.3934/dcdsb.2013.18.1189

[12]

Jian Zhai, Zhihui Cai. $\Gamma$-convergence with Dirichlet boundary condition and Landau-Lifshitz functional for thin film. Discrete and Continuous Dynamical Systems - B, 2009, 11 (4) : 1071-1085. doi: 10.3934/dcdsb.2009.11.1071

[13]

Fan Wu. Conditional regularity for the 3D Navier-Stokes equations in terms of the middle eigenvalue of the strain tensor. Evolution Equations and Control Theory, 2021, 10 (3) : 511-518. doi: 10.3934/eect.2020078

[14]

Ya Li, ShouQiang Du, YuanYuan Chen. Modified spectral PRP conjugate gradient method for solving tensor eigenvalue complementarity problems. Journal of Industrial and Management Optimization, 2022, 18 (1) : 157-172. doi: 10.3934/jimo.2020147

[15]

Mirela Kohr, Sergey E. Mikhailov, Wolfgang L. Wendland. Dirichlet and transmission problems for anisotropic stokes and Navier-Stokes systems with L tensor coefficient under relaxed ellipticity condition. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4421-4460. doi: 10.3934/dcds.2021042

[16]

Mourad Bellassoued, Zouhour Rezig. Recovery of transversal metric tensor in the Schrödinger equation from the Dirichlet-to-Neumann map. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1061-1084. doi: 10.3934/dcdss.2021158

[17]

Aristophanes Dimakis, Folkert Müller-Hoissen. Bidifferential graded algebras and integrable systems. Conference Publications, 2009, 2009 (Special) : 208-219. doi: 10.3934/proc.2009.2009.208

[18]

Xiaoshan Quan, Qin Yue, Liqin Hu. Some constructions of (almost) optimally extendable linear codes. Advances in Mathematics of Communications, 2022  doi: 10.3934/amc.2022027

[19]

Francesco Maddalena, Danilo Percivale, Franco Tomarelli. Adhesive flexible material structures. Discrete and Continuous Dynamical Systems - B, 2012, 17 (2) : 553-574. doi: 10.3934/dcdsb.2012.17.553

[20]

Toyohiko Aiki. A free boundary problem for an elastic material. Conference Publications, 2007, 2007 (Special) : 10-17. doi: 10.3934/proc.2007.2007.10

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (76)
  • HTML views (48)
  • Cited by (0)

Other articles
by authors

[Back to Top]