This paper is concerned with the following nonlinear Schrödinger equations with magnetic potentials
$\begin{equation}\label{0} \Bigl(\frac{\nabla}{i}-α A(|x|)\Bigl)^{2}u+(1+α V(|x|))u=|u|^{p-2}u,\,\,u∈ H^{1}(\mathbb{R}^{N},\mathbb{C}),\ \ \ \ \ \ \ \ \ \ \left( 0.1 \right) \end{equation}$
where $2<p<\frac{2N}{N-2}$ if $N≥q 3$ and $2<p<+∞$ if $N=2$. $α$ can be regarded as a parameter. $A(|x|)=(A_{1}(|x|),A_{2}(|x|),···,A_{N}(|x|))$ is a magnetic field satisfying that $A_{j}(|x|)>0(j=1,...,N)$ is a real $C^{1}$ bounded function on $\mathbb{R}^{N}$ and $V(|x|)>0$ is a real continuous electric potential. Under some decaying conditions of both electric and magnetic potentials which are given in section 1, we prove that the equation has multiple complex-valued solutions by applying the finite reduction method.
Citation: |
A. Ambrosetti
, E. Colorado
and D. Ruiz
, Multi-bump solitons to linearly coupled systems of nonlinear Schrödinger equations, Calc. Var. Partial Differential Equations, 30 (2007)
, 85-112.
doi: 10.1007/s00526-006-0079-0.![]() ![]() ![]() |
|
T. Bartsch
, E. N. Dancer
and S. Peng
, On multi-bump semiclassical bound states of nonlinear Schrödinger euqations with electromagnetic fields, Adv. Differential Equations, 7 (2006)
, 781-812.
![]() ![]() |
|
S. Cingolani
and M. Clapp
, Intertwining semiclassical bound states to a nonlinear magnetic Schrödinger equation, Nonlinearity, 22 (2009)
, 2309-2331.
doi: 10.1088/0951-7715/22/9/013.![]() ![]() ![]() |
|
S. Cingolani
, L. Jeanjean
and S. Secchi
, Multi-peak solutions for magnetic NLS equations without non-degeneracy conditions, ESAIM Control Optim. Calc. Var., 15 (2009)
, 653-675.
doi: 10.1051/cocv:2008055.![]() ![]() ![]() |
|
D. Cao
and E. S. Noussair
, Multiplicity of positive and nodal solutions for nonlinear elliptic problems in $\mathbb{R}^{N}$, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13 (1996)
, 567-588.
doi: 10.1016/S0294-1449(16)30115-9.![]() ![]() ![]() |
|
D. Cao
, E. S. Noussair
and S. Yan
, Existence and uniqueness results on single-peaked solutions of a semilinear problem, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15 (1998)
, 73-111.
doi: 10.1016/S0294-1449(99)80021-3.![]() ![]() ![]() |
|
D. Cao
, E. S. Noussair
and S. Yan
, Solutions with multiple peaks for nonlinear elliptic equations, Proc. Roy. Soc. Edinburgh. Sect. A, (1999)
, 235-264.
doi: 10.1017/S030821050002134X.![]() ![]() ![]() |
|
J. Cosmo
and J. Schaftingen
, Semiclassical stationary states for nonlinear Schrödinger equations under a strong external magnetic field, J. Differential Equations, 259 (2015)
, 596-627.
doi: 10.1016/j.jde.2015.02.016.![]() ![]() ![]() |
|
S. Cingolani
and S. Secchi
, Semiclassical limit for nonlinear Schrödinger equations with electromagenetic fields, J. Math. Anal. Appl., 275 (2002)
, 108-130.
doi: 10.1016/S0022-247X(02)00278-0.![]() ![]() ![]() |
|
S. Cingolani and S. Secchi, Semiclassical states for NLS equations with magenetic potentials having polynomial growths J. Math. Phys. , 46 (2005), 053503, 19 pp.
doi: 10.1063/1.1874333.![]() ![]() ![]() |
|
D. Cao
and Z. Tang
, Existence and Uniqueness of multi-bump bound states of nonlinear Schrödinger equations with electromagnetic fields, J. Differential Equations, 222 (2006)
, 381-424.
doi: 10.1016/j.jde.2005.06.027.![]() ![]() ![]() |
|
Y. Ding
and X. Liu
, Semiclassical solutions of Schrödinger equations with magnetic fields and critical nonlinearities, Manuscripta Math., 140 (2013)
, 51-82.
doi: 10.1007/s00229-011-0530-1.![]() ![]() ![]() |
|
Y. Ding
and Z. Wang
, Bound states of nonlinear Schrödinger equations with magnetic fields, Annali di Matematica, 190 (2011)
, 427-451.
doi: 10.1007/s10231-010-0157-y.![]() ![]() ![]() |
|
C. Gui
, Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method, Comm. Partial Differential Equations, 21 (1996)
, 787-820.
doi: 10.1080/03605309608821208.![]() ![]() ![]() |
|
K. Kurata
, Existence and semi-classical limit of the least energy solution to a nonlinear Schrödinger equation with electromagenetic fields, Nonlinear Anal., 41 (2000)
, 763-778.
doi: 10.1016/S0362-546X(98)00308-3.![]() ![]() ![]() |
|
M. K. Kwong
, Uniqueness of the positive solution of $Δ u-u+u^{p}=0$ in $\mathbb{R}^{n}$, Arch. Rational Mech. Anal., 105 (1989)
, 243-266.
doi: 10.1007/BF00251502.![]() ![]() ![]() |
|
X. Kang
and J. Wei
, On interacting bumps of semi-classical states of nonlinear Schrödinger equations, Adv. Differential Equations, 5 (2000)
, 899-928.
![]() ![]() |
|
W. Long
and S. Peng
, Multiple positive solutions for a type of nonlinear Schrödinger equations, Annali della Scuola Normale Superiore di Pisa Classe di Scienze, 16 (2016)
, 603-623.
![]() |
|
G. Li
, S. Peng
and C. Wang
, Infinitely many solutions for nonlinear Schrödinger equations with electromagnetic fields, J. Differential Equations, 251 (2011)
, 3500-3521.
doi: 10.1016/j.jde.2011.08.038.![]() ![]() ![]() |
|
W. Liu
, Infinitely many solutions for nonlinear Schrödinger systems with magnetic potentials in $\mathbb{R}^{3}$, Math. Meth. Appl. Sci., 39 (2016)
, 1452-1479.
doi: 10.1002/mma.3581.![]() ![]() ![]() |
|
W. Liu and C. Wang, Infinitely many solutions for the nonlinear Schrödinger equations with magnetic potentials in $\mathbb{R}^{N}$
J. Math. Phys. , 54 (2013), 121508, 23pp.
doi: 10.1063/1.4851756.![]() ![]() ![]() |
|
W. Liu
and C. Wang
, Multi-peak solutions of a nonlinear Schrödinger equation with magnetic fields, Adv. Nonlinear Stud., 14 (2014)
, 951-975.
doi: 10.1515/ans-2014-0408.![]() ![]() ![]() |
|
W. Liu
and C. Wang
, Infinitely many solutions for a nonlinear Schrödinger equation with non-symmetric electromagnetic fields, Discrete Contin. Dyn. Syst. A, 36 (2016)
, 7081-7115.
doi: 10.3934/dcds.2016109.![]() ![]() ![]() |
|
E. S. Noussair
and S. Yan
, On positive multipeak solutions of a nonlinear elliptic problem, J. Lond. Math. Soc., 62 (2000)
, 213-227.
doi: 10.1112/S002461070000898X.![]() ![]() ![]() |
|
E. S. Noussair
and S. Yan
, The effect of the domain geometry in singular perturbation problems, Proc. London Math. Soc., 76 (1998)
, 427-452.
doi: 10.1112/S0024611598000148.![]() ![]() ![]() |
|
M. Del Pino
and P. L. Felmer
, Multi-peak bound states for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15 (1998)
, 127-149.
doi: 10.1016/S0294-1449(97)89296-7.![]() ![]() ![]() |
|
S. Shirai, Multi-bump solutions to a nonlinear Schrödinger equation with steep magnetic wells J. Math. Phys. , 56(2015), 091510, 19pp.
doi: 10.1063/1.4930247.![]() ![]() ![]() |
|
M. Squassina
, Soliton dynamics for the nonlinear Schrödinger equation with magnetic field, Manuscripta Math., 130 (2009)
, 461-494.
doi: 10.1007/s00229-009-0307-y.![]() ![]() ![]() |
|
D. Salazar
, Vortex-type solutions to a magnetic nonlinear Choquard equation, Z. Angew. Math. Phys., 66 (2015)
, 663-675.
doi: 10.1007/s00033-014-0412-y.![]() ![]() ![]() |
|
C. Sulem and P. L. Sulem,
The Nonlinear Schrödinger Equation Self-Focusing and Wave Collapse, Applied Mathematical Sciences 139. Springer-Verlag, New York, Berlin, Heidelberg, 1999.
![]() ![]() |
|
J. Wei
and S. Yan
, Infinitely many positive solutions for the nonlinear Schrödinger equations in $\mathbb{R}^{N}$, Calc. Var. Partial Differential Equations, 37 (2010)
, 423-439.
doi: 10.1007/s00526-009-0270-1.![]() ![]() ![]() |
|
J. Wei
and S. Yan
, Infinitely many solutions for the prescribed scalar curvature problem on $\mathbb{S}^N$, J. Funct. Anal., 258 (2010)
, 3048-3081.
doi: 10.1016/j.jfa.2009.12.008.![]() ![]() ![]() |
|
M. Yang
and Y. Wei
, Existence and multiplicity of solutions for nonlinear Schrödinger equations with magnetic field and Hartree type nonlinearities, J. Math. Anal. Appl., 403 (2013)
, 680-694.
doi: 10.1016/j.jmaa.2013.02.062.![]() ![]() ![]() |