In this paper we shall initiate the study of the two-and multi-phase quadrature surfaces (QS), which amounts to a two/multi-phase free boundary problems of Bernoulli type. The problem is studied mostly from a potential theoretic point of view that (for two-phase case) relates to integral representation
$\int_{\partial Ω^+} g h (x) \ dσ_x - \int_{\partial Ω^-} g h (x) \ dσ_x= \int h dμ \ ,$
where $dσ_x$ is the surface measure, $μ= μ^+ - μ^-$ is given measure with support in (a priori unknown domain) $Ω=Ω^+\cupΩ^-$ , $g$ is a given smooth positive function, and the integral holds for all functions $h$ , which are harmonic on $\overline Ω$ .
Our approach is based on minimization of the corresponding two-and multi-phase functional and the use of its one-phase version as a barrier. We prove several results concerning existence, qualitative behavior, and regularity theory for solutions. A central result in our study states that three or more junction points do not appear.
Citation: |
H. W. Alt
, L. A. Caffarelli
and A. Friedman
, Variational problems with two phases and their free boundaries, Transactions of the American Mathematical Society, 282 (1984)
, 431-461.
doi: 10.2307/1999245.![]() ![]() ![]() |
|
H. Alt
and L. A. Caffarelli
, Existence and regularity for a minimum problem with free boundary., J. Reine Angew. Math., 325 (1981)
, 105-144.
![]() ![]() |
|
J. Andersson, H. Shahgholian and G. S. Weiss, In preparation.
![]() |
|
A. Arakelyan
and H. Shahgholian
, Multi-phase quadrature domains and a related minimization problem, Potential Analysis, 45 (2016)
, 135-155.
doi: 10.1007/s11118-016-9539-0.![]() ![]() ![]() |
|
F. Bahrami
and A. Chademan
, Existence of unbounded quadrature domains for the p-laplace operator, Bulletin of Iranian Mathematical Society, 24 (1998)
, 1-13.
![]() ![]() |
|
D. Bucur
and B. Velichkov
, Multiphase shape optimization problems, SIAM Journal on Control and Optimization, 52 (2014)
, 3556-3591.
doi: 10.1137/130917272.![]() ![]() ![]() |
|
L. A. Caffarelli
, D. Jerison
and C. E. Kenig
, Some new monotonicity theorems with applications to free boundary problems, Annals of Mathematics, 155 (2002)
, 369-404.
doi: 10.2307/3062121.![]() ![]() ![]() |
|
M. Conti
, S. Terracini
and G. Verzini
, A variational problem for the spatial segregation of reaction-diffusion systems, Indiana Univ. Math. J., 54 (2005)
, 779-815.
doi: 10.1512/iumj.2005.54.2506.![]() ![]() ![]() |
|
G. David, M. Filoche, D. Jerison and S. Mayboroda, A free boundary problem for the localization of eigenfunctions, arXiv preprint arXiv: 1406.6596.
![]() |
|
P. J. Davis,
The Schwarz Function and Its Applications Carus mathematical monographs, Mathematical Association of America, 1974,
![]() ![]() |
|
B. Emamizadeh
, J. V. Prajapat
and H. Shahgholian
, A two phase free boundary problem related to quadrature domains, Potential Analysis, 34 (2011)
, 119-138.
doi: 10.1007/s11118-010-9184-y.![]() ![]() ![]() |
|
A. Friedman
and D. Phillips
, The free boundary of a semilinear elliptic equation, Transactions of the American Mathematical Society, 282 (1984)
, 153-182.
doi: 10.2307/1999583.![]() ![]() ![]() |
|
B. Gustafsson
and H. Shahgholian
, Existence and geometric properties of solutions of a free boundary problem in potential theory, J. Reine Angew. Math., 473 (1996)
, 137-179.
![]() ![]() |
|
L. Hauswirth
, F. Hélein
and F. Pacard
, On an overdetermined elliptic problem, Pacific Journal of Mathematics, 250 (2011)
, 319-334.
doi: 10.2140/pjm.2011.250.319.![]() ![]() ![]() |
|
A. Henrot
, Subsolutions and supersolutions in a free boundary problem, Arkiv för Matematik, 32 (1994)
, 79-98.
doi: 10.1007/BF02559524.![]() ![]() ![]() |
|
L. Karp
, On null quadrature domains, Computational Methods and Function Theory, 8 (2008)
, 57-72.
doi: 10.1007/BF03321670.![]() ![]() ![]() |
|
J. L. Lewis
and A. Vogel
, On pseudospheres, Rev. Mat. Iberoamericana, 7 (1991)
, 25-54.
doi: 10.4171/RMI/104.![]() ![]() ![]() |
|
J. Mossino,
Inögalitös isopörimötriques et applications en physique vol. 2, Editions Hermann, 1984.
![]() ![]() |
|
M. Onodera
, Geometric flows for quadrature identities, Mathematische Annalen, 361 (2015)
, 77-106.
doi: 10.1007/s00208-014-1062-2.![]() ![]() ![]() |
|
M. Sakai,
Quadrature Domains vol. 934 of Lecture Notes in Mathematics, Springer-Verlag, Berlin-New York, 1982.
![]() ![]() |
|
H. Shahgholian
, Existence of quadrature surfaces for positive measures with finite support, Potential Analysis, 3 (1994)
, 245-255.
doi: 10.1007/BF01053435.![]() ![]() ![]() |
|
H. Shahgholian
, Quadrature surfaces as free boundaries, Arkiv för Matematik, 32 (1994)
, 475-492.
doi: 10.1007/BF02559582.![]() ![]() ![]() |
|
M. Traizet
, Classification of the solutions to an overdetermined elliptic problem in the plane, Geometric and Functional Analysis, 24 (2014)
, 690-720.
doi: 10.1007/s00039-014-0268-5.![]() ![]() ![]() |
|
B. Velichkov, A note on the monotonicity formula of caffarelli-jerison-kenig Preprint available at: http://cvgmt.sns.it/paper/2266.
doi: 10.4171/RLM/673.![]() ![]() ![]() |