\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Two-and multi-phase quadrature surfaces

  • * Corresponding author

    * Corresponding author 

A. Arakelyan was supported by State Committee of Science MES RA, in frame of the research project No. 16YR-1A017. H. Shahgholian is partially supported by the Swedish Research Council

Abstract Full Text(HTML) Related Papers Cited by
  • In this paper we shall initiate the study of the two-and multi-phase quadrature surfaces (QS), which amounts to a two/multi-phase free boundary problems of Bernoulli type. The problem is studied mostly from a potential theoretic point of view that (for two-phase case) relates to integral representation

    $\int_{\partial Ω^+} g h (x) \ dσ_x - \int_{\partial Ω^-} g h (x) \ dσ_x= \int h dμ \ ,$

    where $dσ_x$ is the surface measure, $μ= μ^+ - μ^-$ is given measure with support in (a priori unknown domain) $Ω=Ω^+\cupΩ^-$ , $g$ is a given smooth positive function, and the integral holds for all functions $h$ , which are harmonic on $\overline Ω$ .

    Our approach is based on minimization of the corresponding two-and multi-phase functional and the use of its one-phase version as a barrier. We prove several results concerning existence, qualitative behavior, and regularity theory for solutions. A central result in our study states that three or more junction points do not appear.

    Mathematics Subject Classification: Primary: 35R35, 31A05, 31B05, 31B20.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  •   H. W. Alt , L. A. Caffarelli  and  A. Friedman , Variational problems with two phases and their free boundaries, Transactions of the American Mathematical Society, 282 (1984) , 431-461.  doi: 10.2307/1999245.
      H. Alt  and  L. A. Caffarelli , Existence and regularity for a minimum problem with free boundary., J. Reine Angew. Math., 325 (1981) , 105-144. 
      J. Andersson, H. Shahgholian and G. S. Weiss, In preparation.
      A. Arakelyan  and  H. Shahgholian , Multi-phase quadrature domains and a related minimization problem, Potential Analysis, 45 (2016) , 135-155.  doi: 10.1007/s11118-016-9539-0.
      F. Bahrami  and  A. Chademan , Existence of unbounded quadrature domains for the p-laplace operator, Bulletin of Iranian Mathematical Society, 24 (1998) , 1-13. 
      D. Bucur  and  B. Velichkov , Multiphase shape optimization problems, SIAM Journal on Control and Optimization, 52 (2014) , 3556-3591.  doi: 10.1137/130917272.
      L. A. Caffarelli , D. Jerison  and  C. E. Kenig , Some new monotonicity theorems with applications to free boundary problems, Annals of Mathematics, 155 (2002) , 369-404.  doi: 10.2307/3062121.
      M. Conti , S. Terracini  and  G. Verzini , A variational problem for the spatial segregation of reaction-diffusion systems, Indiana Univ. Math. J., 54 (2005) , 779-815.  doi: 10.1512/iumj.2005.54.2506.
      G. David, M. Filoche, D. Jerison and S. Mayboroda, A free boundary problem for the localization of eigenfunctions, arXiv preprint arXiv: 1406.6596.
      P. J. Davis, The Schwarz Function and Its Applications Carus mathematical monographs, Mathematical Association of America, 1974,
      B. Emamizadeh , J. V. Prajapat  and  H. Shahgholian , A two phase free boundary problem related to quadrature domains, Potential Analysis, 34 (2011) , 119-138.  doi: 10.1007/s11118-010-9184-y.
      A. Friedman  and  D. Phillips , The free boundary of a semilinear elliptic equation, Transactions of the American Mathematical Society, 282 (1984) , 153-182.  doi: 10.2307/1999583.
      B. Gustafsson  and  H. Shahgholian , Existence and geometric properties of solutions of a free boundary problem in potential theory, J. Reine Angew. Math., 473 (1996) , 137-179. 
      L. Hauswirth , F. Hélein  and  F. Pacard , On an overdetermined elliptic problem, Pacific Journal of Mathematics, 250 (2011) , 319-334.  doi: 10.2140/pjm.2011.250.319.
      A. Henrot , Subsolutions and supersolutions in a free boundary problem, Arkiv för Matematik, 32 (1994) , 79-98.  doi: 10.1007/BF02559524.
      L. Karp , On null quadrature domains, Computational Methods and Function Theory, 8 (2008) , 57-72.  doi: 10.1007/BF03321670.
      J. L. Lewis  and  A. Vogel , On pseudospheres, Rev. Mat. Iberoamericana, 7 (1991) , 25-54.  doi: 10.4171/RMI/104.
      J. Mossino, Inögalitös isopörimötriques et applications en physique vol. 2, Editions Hermann, 1984.
      M. Onodera , Geometric flows for quadrature identities, Mathematische Annalen, 361 (2015) , 77-106.  doi: 10.1007/s00208-014-1062-2.
      M. Sakai, Quadrature Domains vol. 934 of Lecture Notes in Mathematics, Springer-Verlag, Berlin-New York, 1982.
      H. Shahgholian , Existence of quadrature surfaces for positive measures with finite support, Potential Analysis, 3 (1994) , 245-255.  doi: 10.1007/BF01053435.
      H. Shahgholian , Quadrature surfaces as free boundaries, Arkiv för Matematik, 32 (1994) , 475-492.  doi: 10.1007/BF02559582.
      M. Traizet , Classification of the solutions to an overdetermined elliptic problem in the plane, Geometric and Functional Analysis, 24 (2014) , 690-720.  doi: 10.1007/s00039-014-0268-5.
      B. Velichkov, A note on the monotonicity formula of caffarelli-jerison-kenig Preprint available at: http://cvgmt.sns.it/paper/2266. doi: 10.4171/RLM/673.
  • 加载中
SHARE

Article Metrics

HTML views(765) PDF downloads(187) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return