-
Previous Article
Blow-up problem for semilinear heat equation with nonlinear nonlocal Neumann boundary condition
- CPAA Home
- This Issue
-
Next Article
Two-and multi-phase quadrature surfaces
Sharp Strichartz estimates in spherical coordinates
Fakultät für Mathematik, Universität Bielefeld, Postfach 10 01 31,33501 Bielefeld, Germany |
We prove Strichartz estimates found after adding regularity in the spherical coordinates for Schrödinger-like equations. The obtained estimates are sharp up to endpoints. The proof relies on estimates involving spherical averages, which were obtained in [
References:
[1] |
Y. Cho, Z. Guo and S. Lee,
A Sobolev estimate for the adjoint restriction operator, Math. Ann., 362 (2015), 799-815.
doi: 10.1007/s00208-014-1130-7. |
[2] |
Y. Cho and S. Lee,
Strichartz estimates in spherical coordinates, Indiana Univ. Math. J., 62 (2013), 991-1020.
doi: 10.1512/iumj.2013.62.4970. |
[3] |
Y. Cho, T. Ozawa and S. Xia,
Remarks on some dispersive estimates, Commun. Pure Appl. Anal., 10 (2011), 1121-1128.
doi: 10.3934/cpaa.2011.10.1121. |
[4] |
D. Fang and C. Wang,
Weighted Strichartz estimates with angular regularity and their applications, Forum Math., 23 (2011), 181-205.
doi: 10.1515/FORM.2011.009. |
[5] |
Z. Guo,
Sharp spherically averaged Stichartz estimates for the Schrödinger equation, Nonlinearity, 29 (2016), 1668-1686.
doi: 10.1088/0951-7715/29/5/1668. |
[6] |
Z. Guo and Y. Wang,
Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations, J. Anal. Math., 124 (2014), 1-38.
doi: 10.1007/s11854-014-0025-6. |
[7] |
J.-C. Jiang, C. Wang and X. Yu,
Generalized and weighted Strichartz estimates, Commun. Pure Appl. Anal., 11 (2012), 1723-1752.
doi: 10.3934/cpaa.2012.11.1723. |
[8] |
M. Keel and T. Tao,
Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980.
|
[9] |
J. Sterbenz,
Angular regularity and Strichartz estimates for the wave equation, Int. Math. Res. Not., (), 187-231.
doi: 10.1155/IMRN.2005.187. |
[10] |
R. S. Strichartz,
Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., 44 (1977), 705-714.
|
show all references
References:
[1] |
Y. Cho, Z. Guo and S. Lee,
A Sobolev estimate for the adjoint restriction operator, Math. Ann., 362 (2015), 799-815.
doi: 10.1007/s00208-014-1130-7. |
[2] |
Y. Cho and S. Lee,
Strichartz estimates in spherical coordinates, Indiana Univ. Math. J., 62 (2013), 991-1020.
doi: 10.1512/iumj.2013.62.4970. |
[3] |
Y. Cho, T. Ozawa and S. Xia,
Remarks on some dispersive estimates, Commun. Pure Appl. Anal., 10 (2011), 1121-1128.
doi: 10.3934/cpaa.2011.10.1121. |
[4] |
D. Fang and C. Wang,
Weighted Strichartz estimates with angular regularity and their applications, Forum Math., 23 (2011), 181-205.
doi: 10.1515/FORM.2011.009. |
[5] |
Z. Guo,
Sharp spherically averaged Stichartz estimates for the Schrödinger equation, Nonlinearity, 29 (2016), 1668-1686.
doi: 10.1088/0951-7715/29/5/1668. |
[6] |
Z. Guo and Y. Wang,
Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations, J. Anal. Math., 124 (2014), 1-38.
doi: 10.1007/s11854-014-0025-6. |
[7] |
J.-C. Jiang, C. Wang and X. Yu,
Generalized and weighted Strichartz estimates, Commun. Pure Appl. Anal., 11 (2012), 1723-1752.
doi: 10.3934/cpaa.2012.11.1723. |
[8] |
M. Keel and T. Tao,
Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980.
|
[9] |
J. Sterbenz,
Angular regularity and Strichartz estimates for the wave equation, Int. Math. Res. Not., (), 187-231.
doi: 10.1155/IMRN.2005.187. |
[10] |
R. S. Strichartz,
Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., 44 (1977), 705-714.
|
[1] |
Xingwen Hao, Yachun Li, Zejun Wang. Non-relativistic global limits to the three dimensional relativistic euler equations with spherical symmetry. Communications on Pure and Applied Analysis, 2010, 9 (2) : 365-386. doi: 10.3934/cpaa.2010.9.365 |
[2] |
Fabrice Baudoin, Camille Tardif. Hypocoercive estimates on foliations and velocity spherical Brownian motion. Kinetic and Related Models, 2018, 11 (1) : 1-23. doi: 10.3934/krm.2018001 |
[3] |
Sanjay Dharmavaram, Timothy J. Healey. Direct construction of symmetry-breaking directions in bifurcation problems with spherical symmetry. Discrete and Continuous Dynamical Systems - S, 2019, 12 (6) : 1669-1684. doi: 10.3934/dcdss.2019112 |
[4] |
James Montaldi. Bifurcations of relative equilibria near zero momentum in Hamiltonian systems with spherical symmetry. Journal of Geometric Mechanics, 2014, 6 (2) : 237-260. doi: 10.3934/jgm.2014.6.237 |
[5] |
C. Bandle, Y. Kabeya, Hirokazu Ninomiya. Imperfect bifurcations in nonlinear elliptic equations on spherical caps. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1189-1208. doi: 10.3934/cpaa.2010.9.1189 |
[6] |
Seongyeon Kim, Yehyun Kwon, Ihyeok Seo. Strichartz estimates and local regularity for the elastic wave equation with singular potentials. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1897-1911. doi: 10.3934/dcds.2020344 |
[7] |
Alexander Barg, Oleg R. Musin. Codes in spherical caps. Advances in Mathematics of Communications, 2007, 1 (1) : 131-149. doi: 10.3934/amc.2007.1.131 |
[8] |
Susanna V. Haziot. On the spherical geopotential approximation for Saturn. Communications on Pure and Applied Analysis, 2022, 21 (7) : 2327-2336. doi: 10.3934/cpaa.2022035 |
[9] |
Chu-Hee Cho, Youngwoo Koh, Ihyeok Seo. On inhomogeneous Strichartz estimates for fractional Schrödinger equations and their applications. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 1905-1926. doi: 10.3934/dcds.2016.36.1905 |
[10] |
Youngwoo Koh, Ihyeok Seo. Strichartz estimates for Schrödinger equations in weighted $L^2$ spaces and their applications. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4877-4906. doi: 10.3934/dcds.2017210 |
[11] |
Younghun Hong, Changhun Yang. Uniform Strichartz estimates on the lattice. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3239-3264. doi: 10.3934/dcds.2019134 |
[12] |
Jin-Cheng Jiang, Chengbo Wang, Xin Yu. Generalized and weighted Strichartz estimates. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1723-1752. doi: 10.3934/cpaa.2012.11.1723 |
[13] |
Robert Schippa. Generalized inhomogeneous Strichartz estimates. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3387-3410. doi: 10.3934/dcds.2017143 |
[14] |
Mason A. Porter, Richard L. Liboff. The radially vibrating spherical quantum billiard. Conference Publications, 2001, 2001 (Special) : 310-318. doi: 10.3934/proc.2001.2001.310 |
[15] |
Aravind Asok, James Parson. Equivariant sheaves on some spherical varieties. Electronic Research Announcements, 2011, 18: 119-130. doi: 10.3934/era.2011.18.119 |
[16] |
Linh V. Nguyen. Spherical mean transform: A PDE approach. Inverse Problems and Imaging, 2013, 7 (1) : 243-252. doi: 10.3934/ipi.2013.7.243 |
[17] |
Shaobo Lin, Xingping Sun, Zongben Xu. Discretizing spherical integrals and its applications. Conference Publications, 2013, 2013 (special) : 499-514. doi: 10.3934/proc.2013.2013.499 |
[18] |
Mark Agranovsky, David Finch, Peter Kuchment. Range conditions for a spherical mean transform. Inverse Problems and Imaging, 2009, 3 (3) : 373-382. doi: 10.3934/ipi.2009.3.373 |
[19] |
Peter Boyvalenkov, Maya Stoyanova. New nonexistence results for spherical designs. Advances in Mathematics of Communications, 2013, 7 (3) : 279-292. doi: 10.3934/amc.2013.7.279 |
[20] |
Gui-Qiang G. Chen, Hairong Yuan. Local uniqueness of steady spherical transonic shock-fronts for the three--dimensional full Euler equations. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2515-2542. doi: 10.3934/cpaa.2013.12.2515 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]