Using penalization techniques and the Ljusternik-Schnirelmann theory, we establish the multiplicity and concentration of solutions for the following fractional Schrödinger equation
$\left\{ \begin{align} &{{\varepsilon }^{2\alpha }}{{\left( -\Delta \right)}^{a}}u+V\left( x \right)u=f\left( u \right),\ \ x\in {{\mathbb{R}}^{N}}, \\ &u\in {{H}^{a}}\left( {{\mathbb{R}}^{N}} \right),u>0,\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x\in {{\mathbb{R}}^{N}}, \\ \end{align} \right.$
where $0<α<1$ , $N>2α$ , $\varepsilon>0$ is a small parameter, $V$ satisfies the local condition, and $f$ is superlinear and subcritical nonlinearity. We show that this equation has at least $\text{cat}_{M_{δ}}(M)$ single spike solutions.
Citation: |
C. O. Alves
, G. M. Figueiredo
and M. F. Furtado
, Multiple solutions for a nonlinear Schrödinger equation with magnetic fields, Comm. Partial Differential Equations, 36 (2011)
, 1565-1586.
doi: 10.1080/03605302.2011.593013.![]() ![]() ![]() |
|
A. Ambrosetti and A. Malchiodi,
Nonlinear Analysis and Semilinear Elliptic Problems, Cambridge University Press, 2007.
doi: 10.1017/CBO9780511618260.![]() ![]() ![]() |
|
B. Barrios
, E. Colorado
, R. Servadei
and F. Soria
, A critical fractional equation with concave-convex power nonlinearities, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015)
, 875-900.
doi: 10.1016/j.anihpc.2014.04.003.![]() ![]() ![]() |
|
V. Benci
and G. Cerami
, The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems, Arch. Rational. Mech. Anal., 114 (1991)
, 79-93.
doi: 10.1007/BF00375686.![]() ![]() ![]() |
|
C. Bucur and M. Medina, A fractional elliptic problem in $\mathbb{R}^n$ with critical growth and convex nonlinearities, preprint, arXiv: 1609.01911.
![]() |
|
C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications, Lecture Notes of the Unione Matematica Italiana, 20. Springer, [Cham]; Unione Matematica Italiana, Bologna, 2016.
doi: 10.1007/978-3-319-28739-3.![]() ![]() ![]() |
|
J. Byeon
, O. Kwon
and J. Seok
, Nonlinear scalar field equations involving the fractional Laplacian, Nonlinearity, 30 (2017)
, 1659-1681.
![]() |
|
X. Cabré
and Y. Sire
, Nonlinear equations for fractional Laplacians Ⅰ: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014)
, 23-53.
doi: 10.1016/j.anihpc.2013.02.001.![]() ![]() ![]() |
|
X. Cabré
and Y. Sire
, Nonlinear equations for fractional Laplacians Ⅱ: Existence, uniqueness and qualitative properties of solutions, Trans. Amer. Math. Soc., 367 (2015)
, 911-941.
doi: 10.1090/S0002-9947-2014-05906-0.![]() ![]() ![]() |
|
L. Caffarelli
and L. Silvestre
, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007)
, 1245-1260.
doi: 10.1080/03605300600987306.![]() ![]() ![]() |
|
G. Chen
, Multiple semiclassical standing waves for fractional nonlinear Schrödinger equations, Nonlinearity, 28 (2015)
, 927-949.
doi: 10.1088/0951-7715/28/4/927.![]() ![]() ![]() |
|
G. Chen
and Y. Zheng
, Concentration phenomenon for fractional nonlinear Schrödinger equations, Commun. Pure Appl. Anal., 13 (2014)
, 2359-2376.
doi: 10.3934/cpaa.2014.13.2359.![]() ![]() ![]() |
|
M. Cheng, Bound state for the fractional Schrödinger equation with unbounded potential J. Math. Phys. 53 (2012), 043507.
doi: 10.1063/1.3701574.![]() ![]() ![]() |
|
S. Cingolani
and M. Lazzo
, Multiple positive solutions to nonlinear Schrödinger equations with competing potential functions, J. Differential Equations, 160 (2000)
, 118-138.
doi: 10.1006/jdeq.1999.3662.![]() ![]() ![]() |
|
J. Dávila
, M. del Pino
, S. Dipierro
and E. Valdinoci
, Concentration phenomena for the nonlocal Schrödinger equation with Dirichlet datum, Anal. PDE, 8 (2015)
, 1165-1235.
doi: 10.2140/apde.2015.8.1165.![]() ![]() ![]() |
|
J. Dávila
, M. Del Pino
and J. C. Wei
, Concentrating standing waves for the fractional nonlinear Schrödinger equation, J. Differential Equations, 256 (2014)
, 858-892.
doi: 10.1016/j.jde.2013.10.006.![]() ![]() ![]() |
|
M. Del Pino
and P. Felmer
, Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations, 4 (1996)
, 121-137.
doi: 10.1007/BF01189950.![]() ![]() ![]() |
|
E. Di Nezza
, G. Palatucci
and E. Valdinoci
, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. math., 136 (2012)
, 521-573.
doi: 10.1016/j.bulsci.2011.12.004.![]() ![]() ![]() |
|
S. Dipierro, M. Medina, I. Peral and E. Valdinoci, Bifurcation results for a fractional elliptic equation with critical exponent in $\mathbb{R}^n$ Manuscripta Math. (2016),
doi: 10.1007/s00229-016-0878-3.![]() ![]() ![]() |
|
S. Dipierro, M. Medina and E. Valdinoci, Fractional elliptic problems with critical growth in the whole of $\mathbb{R}^n$ in Appunti. Edizioni della Normale Scuola Normale di Pisa (2017). arXiv: 1506.01748.
doi: 10.1007/978-88-7642-601-8.![]() ![]() ![]() |
|
M. M. Fall
and E. Valdinoci
, Uniqueness and nondegeneracy of positive solutions of $(Δ)^s u+u=u^p$ in $\mathbb{R}^N$ when $s$ is close to $1$, Comm. Math. Phys., 329 (2014)
, 383-404.
doi: 10.1007/s00220-014-1919-y.![]() ![]() ![]() |
|
M. M. Fall
, F. Mahmoudi
and E. Valdinoci
, Ground states and concentration phenomena for the fractional Schrödinger equation, Nonlinearity, 28 (2015)
, 1937-1961.
doi: 10.1088/0951-7715/28/6/1937.![]() ![]() ![]() |
|
P. Felmer
, A. Quaas
and J. Tan
, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 142 (2012)
, 1237-1262.
doi: 10.1017/S0308210511000746.![]() ![]() ![]() |
|
G. M. Figueiredo and G. Siciliano, A multiplicity result via Ljusternick-Schnirelmann category and Morse theory for a fractional Schrdinger equation in $\mathbb{R}^N$
Nonlinear Differ. Equ. Appl. 23 (2016), 12.
doi: 10.1007/s00030-016-0355-4.![]() ![]() ![]() |
|
A. Fiscella
, R. Servadei
and E. Valdinoci
, Density properties for fractional Sobolev spaces, Ann. Acad. Sci. Fenn. Math., 40 (2015)
, 235-53.
doi: 10.5186/aasfm.2015.4009.![]() ![]() ![]() |
|
R. L. Frank
and E. Lenzmann
, Uniqueness of non-linear ground states for fractional Laplacians in $\mathbb{R}$, Acta Math., 210 (2013)
, 261-318.
doi: 10.1007/s11511-013-0095-9.![]() ![]() ![]() |
|
R. L. Frank
, E. Lenzmann
and L. Silvestre
, Uniqueness of radial solutions for the fractional Laplacian, Comm. Pure Appl. Math., 69 (2016)
, 1671-1726.
doi: 10.1002/cpa.21591.![]() ![]() ![]() |
|
N. Laskin
, Fractional quantum mechanics, Phys. Rev. E, 62 (2000)
, 31-35.
![]() |
|
W. Liu, Multiple solutions for a fractional nonlinear Schrödinger equation with a general nonlinearity, prepared.
![]() |
|
S. Secchi, Ground state solutions for nonlinear fractional Schrödinger equations in $\mathbb{R}^N$
J. Math. Phys. 54 (2013), 031501.
doi: 10.1063/1.4793990.![]() ![]() ![]() |
|
R. Servadei
and E. Valdinoci
, Lewy-Stampacchia type estimates for variational inequalities driven by (non)local operators, Rev. Mat. Iberoam., 29 (2013)
, 1091-1126.
doi: 10.4171/RMI/750.![]() ![]() ![]() |
|
R. Servadei
and E. Valdinoci
, Mountain Pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012)
, 887-898.
doi: 10.1016/j.jmaa.2011.12.032.![]() ![]() ![]() |
|
R. Servadei
and E. Valdinoci
, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013)
, 2105-2137.
![]() ![]() |
|
R. Servadei
and E. Valdinoci
, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc., 367 (2015)
, 67-102.
doi: 10.1090/S0002-9947-2014-05884-4.![]() ![]() ![]() |
|
X. Shang, J. Zhang and Y. Yang, On fractional Schödinger equation in $\mathbb{R}^N$ with critical growth J. Math. Phys. 54 (2013), 121502.
doi: 10.1063/1.4835355.![]() ![]() ![]() |
|
X. Shang
and J. Zhang
, Ground states for fractional Schrödinger equations with critical growth, Nonlinearity, 27 (2014)
, 187-207.
doi: 10.1088/0951-7715/27/2/187.![]() ![]() ![]() |
|
X. Shang
and J. Zhang
, Concentrating solutions of nonlinear fractional Schrödinger equation with potentials, J. Differential Equations, 258 (2015)
, 1106-1128.
doi: 10.1016/j.jde.2014.10.012.![]() ![]() ![]() |