\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A Heteroclinic Solution to a Variational Problem Corresponding to FitzHugh-Nagumo type Reaction-Diffusion System with Heterogeneity

Abstract Full Text(HTML) Related Papers Cited by
  • Chen, Kung and Morita [5] studied a variational problem corresponding to the FitzHugh-Nagumo type reaction-diffusion system (FHN type RD system), and they proved the existence of a heteroclinic solution to the system.

    Motivated by [5], we consider a variational problem corresponding to FHN type RD system which involves heterogeneity. We prove the existence of a heteroclinic solution to the problem under certain conditions on the heterogeneity. Moreover, we give some information about the location of the transitions.

    Mathematics Subject Classification: Primary: 35J50, 35K57; Secondary: 35Q92.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  •   H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differencial Equations Springer, New York, 2010.
      D. Bonheure  and  L. Sanchez , Heteroclinic orbits for some classes of second and fourth order differential equations, Handbook of Differential Equations, 3 (2006) , 103-202.  doi: 10.1016/S1874-5725(06)80006-4.
      C. N. Chen  and  Y. Choi , Standing pulse solutions to FitzHugh-Nagumo equations, Arch. Ration. Mech. Anal., 206 (2012) , 741-777.  doi: 10.1007/s00205-012-0542-3.
      C. N. Chen, P. van Heijster, Y. Nishiura and T. Teramoto, Localized patterns in a three-component FizHugh-Nagumo model revisited via an action functional J. Dyn. Diff. Equat. (2016), doi:10.1007/s10884-016-9557-z.
      C. N. Chen , S. Y. Kung  and  Y. Morita , Planar Standing wavefronts in the FitzHugh-Nagumo equations, SIAM J. Math. Anal., 46 (2014) , 657-690.  doi: 10.1137/130907793.
      E. N. Dancer  and  S. Yan , A minimization problem associated with elliptic systems of FitzHugh-Nagumo type, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004) , 237-253.  doi: 10.1016/S0294-1449(03)00032-5.
      S. Ei  and  H. Ikeda , Front dynamics in heterogeneous diffusive media, Physica D, 239 (2010) , 1637-1649.  doi: 10.1016/j.physd.2010.04.008.
      T. Kajiwara and K. Kurata, On a variational problem arising from the three-component FitzHugh-Nagumo type reaction-diffusion systems, Tokyo J. Math. accepted, 2016.
      Y. Nishiura , T. Teramoto  and  X. Yuan , Heterogeneity-introduced spot dynamics for a three-component reaction-diffusion system, Comm. Pure Appl. Anal., 11 (2012) , 307-338.  doi: 10.3934/cpaa.2012.11.307.
      Y. Oshita , On stable nonconstant stationary solutions and mesoscopic patterns for FitzHugh-Nagumo equations in higher dimensions, J. Differential Equations, 188 (2003) , 110-134.  doi: 10.1016/S0022-0396(02)00084-0.
      C. Sourdis , The heteroclinic connection problem for general double-well potentials, Mediterr. J. Math., 13 (2016) , 4693-4710.  doi: 10.1007/s00009-016-0770-0.
  • 加载中
SHARE

Article Metrics

HTML views(103) PDF downloads(198) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return