Advanced Search
Article Contents
Article Contents

Boundary Layer Problem and Quasineutral Limit of Compressible Euler-Poisson System

  • * Corresponding author

    * Corresponding author

Shu Wang is supported by NSF grant 11371042, Chundi Liu is supported by NSF grant 11471028,11601021

Abstract Full Text(HTML) Related Papers Cited by
  • We study the boundary layer problem and the quasineutral limit of the compressible Euler-Poisson system arising from plasma physics in a domain with boundary. The quasineutral regime is the incompressible Euler equations. Compared to the quasineutral limit of compressible Euler-Poisson equations in whole space or periodic domain, the key difficulty here is to deal with the singularity caused by the boundary layer. The proof of the result is based on a λ-weighted energy method and the matched asymptotic expansion method.

    Mathematics Subject Classification: Primary: 35B25, 35B40; Secondary: 35K57.


    \begin{equation} \\ \end{equation}
  • 加载中
  •   G. Alì , D. Bini  and  S. Rionero , Global existence and relaxation limit for smooth solution to the Euler-Poisson model for semiconductors, SIAM J. Math. Anal., 32 (2000) , 572-587.  doi: 10.1137/S0036141099355174.
      G. Alì  and  A. Jüngel , Global smooth solutions to the multi-dimensional hydrodynamic model for two-carrier plasmas, J. Diff. Equations, 190 (2003) , 663-685.  doi: 10.1016/S0022-0396(02)00157-2.
      S. Cordier  and  E. Grenier , Quasineutral limit of an Euler-Poisson system arising from plasma physics, Comm. Partial Differential Equations, 25 (2000) , 1099-1113.  doi: 10.1080/03605300008821542.
      D. Gérard-Varet , D. Han-Kwan  and  F. Rousset , Quasineutral limit of the Euler-Poisson system for ions in a domain with boundaries Ⅰ., Indiana Univ. Math. J., 62 (2013) , 359-402.  doi: 10.1512/iumj.2013.62.4900.
      D. Gérard-Varet , D. Han-Kwan  and  F. Rousset , Quasineutral limit of the Euler-Poisson system for ions in a domain with boundaries Ⅱ., J. Éc. polytech. Math., 1 (2014) , 343-386. 
      Y. Guo , Smooth irrotational flows in the large to the Euler-Poisson system in $R^{3+1}$, Comm. Math. Phys., 195 (1998) , 249-265.  doi: 10.1007/s002200050388.
      Y. Guo  and  B. Pausader , Global smooth ion dynamics in the Euler-Poisson system, Comm. Math. Phys., 303 (2011) , 89-125.  doi: 10.1007/s00220-011-1193-1.
      Y. Guo  and  W. Strauss , Stability of semiconductor states with insulating and contact boundary conditions, Arch. Rat. Mech. and Anal., 179 (2006) , 1-30.  doi: 10.1007/s00205-005-0369-2.
      L. Hsiao , P. A. Markowich  and  S. Wang , The asymptotic behavior of globally smooth solutions of the multidimensional isentropic hydrodynamic model for semiconductors, J. Diff. Equations, 192 (2003) , 111-133.  doi: 10.1016/S0022-0396(03)00063-9.
      S. Jiang , Q. C. Ju , H. L. Li  and  Y. Li , Quasi-neutral limit of the full bipolar Euler-Poisson system, Sci. China Math., 53 (2010) , 3099-3114.  doi: 10.1007/s11425-010-4114-4.
      Q. C. Ju , H. L. Li , Y. Li  and  S. Jiang , Quasi-neutral limit of the two-fluid Euler-Poisson system, Commun. Pure Appl. Anal., 9 (2010) , 1577-1590.  doi: 10.3934/cpaa.2010.9.1577.
      Q. C. Ju and Y. Li, Quasineutral limit of the two-fluid Euler-Poisson system in a boundary domain of $R^3$, submitted.
      T. Kato , Nonstationary flow of viscous and ideal fluids in $R^3$, J. Funct. Anal., 9 (1972) , 296-305. 
      Y. C. Li , Y. J. Peng  and  Y. G. Wang , From two-fluid Euler-Poisson equations to one-fluid Euler equations, Asymptot. Anal., 85 (2013) , 125-148. 
      C. D. Liu and B. Y. Wang, Quasineutral limit for a model of three dimensional Euler-Poisson system with boundary Anal. Appl. accepted. doi: 10.1007/s11401-013-0782-z.
      G. Loeper , Quasi-neutral limit of the Euler-Poisson and Euler-Monge-Ampére systems, Comm. Partial Differential Equations, 30 (2005) , 1141-1167.  doi: 10.1080/03605300500257545.
      A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables Springer-Verlag Wien New York, 1984. doi: 10.1007/978-1-4612-1116-7.
      P. A. Markowich, C. A. Ringhofer and C. Schmeiser, Semiconductor Equations Springer-Verlag Wien New York, 1990. doi: 10.1007/978-3-7091-6961-2.
      Y. J. Peng , Asymptotic limits of one-dimensional hydrodynamic models for plasmas and semiconductors, Chinese Ann. Math. Ser. B, 23 (2002) , 25-36.  doi: 10.1142/S0252959902000043.
      Y. J. Peng , Some asymptotic analysis in steady-state Euler-Poisson equations for potential flow, Asymptot. Anal., 36 (2003) , 75-92. 
      Y. J. Peng  and  S. Wang , Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters, Discrete Contin. Dyn. Syst., 23 (2009) , 415-433.  doi: 10.3934/dcds.2009.23.415.
      Y. J. Peng  and  Y. G. Wang , Boundary layers and quasi-neutral limit in seady state Euler-Poisson equations for potential folws, Nonlinearity, 17 (2004) , 835-849.  doi: 10.1088/0951-7715/17/3/006.
      Y. J. Peng  and  Y. G. Wang , Convergence of compressible Euler-Poisson equations to incompressible Euler equations, Asymptot. Analysis, 41 (2005) , 141-160. 
      Y. J. Peng , Y. G. Wang  and  W. A. Yong , Quasi-neutral limit of the non-isentropic Euler-Poisson system, Proc. Roy. Soc. Edinburgh Sect., A 136 (2006) , 1013-1026.  doi: 10.1017/S0308210500004856.
      X. K. Pu , Quasineutral limit of the Euler-Poisson system under strong magnetic fields, Discrete Contin. Dyn. Syst. Ser. S, 9 (2016) , 2095-2111.  doi: 10.3934/dcdss.2016086.
      M. Slemrod  and  N. Sternberg , Quasi-neutral limit for Euler-Poisson system, J. Nonlinear Sci., 11 (2001) , 193-209.  doi: 10.1007/s00332-001-0004-9.
      M. Suzuki , Asymptotic stability of stationary solutions to the Euler-Poisson equations arising in plasma physics, Kinet. Relat. Models, 4 (2011) , 569-588.  doi: 10.3934/krm.2011.4.569.
      I. Violet , High-order expansions in the quasi-neutral limit of the Euler-Poisson system for a potential flow, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007) , 1101-1118.  doi: 10.1017/S0308210505001216.
      S. Wang , Quasineutral limit of Euler-Poisson system with and without viscosity, Comm. Partial Differential Equations, 29 (2004) , 419-456.  doi: 10.1081/PDE-120030403.
  • 加载中

Article Metrics

HTML views(358) PDF downloads(190) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint