We are concerned with the study of the following nonlinear eigenvalue problem with Robin boundary condition
$\begin{cases} -{\rm div}\,(a(x,\nabla u))=λ b(x,u)&\mbox{in} \ Ω\\\dfrac{\partial A}{\partial n}+β(x) c(x,u)=0&\mbox{on}\\partialΩ.\end{cases}$
The abstract setting involves Sobolev spaces with variable exponent. The main result of the present paper establishes a sufficient condition for the existence of an unbounded sequence of eigenvalues. Our arguments strongly rely on the Lusternik-Schnirelmann principle. Finally, we focus to the following particular case, which is a $p(x)$-Laplacian problem with several variable exponents:
$\begin{cases} -{\rm div}\,(a_0(x) |\nabla u|^{p(x)-2}\nabla u)=λ b_0(x)|u|^{q(x)-2}u&\mbox{in} \ Ω\\|\nabla u|^{p(x)-2}\dfrac{\partial u}{\partial n}+β(x)|u|^{r(x)-2} u=0&\mbox{on}\\partialΩ.\end{cases}$
Combining variational arguments, we establish several properties of the eigenvalues family of this nonhomogeneous Robin problem.
Citation: |
[1] |
R. Agarwal, M. B. Ghaemi and S. Saiedinezhad, The existence of weak solution for degenerate $ \sum {{\Delta _{{p_i}(x)}}} $-equation, J. Comput. Anal. Appl., 13 (2011), 629-641.
![]() ![]() |
[2] |
C. Alves and Marco A. S. Souto, Existence of solutions for a class of problems in $ {\mathbb R}^N $ involving the p(x)-Laplacian, in Contributions to nonlinear analysis, Birkhäuser Basel, (2005), 17-32.
doi: 10.1007/3-7643-7401-2_2.![]() ![]() ![]() |
[3] |
R. Aronson, Boundary conditions for diffusion of light, J. Opt. Soc. Am. A, 12 (1995), 2532-2539.
![]() |
[4] |
F. Browder, On the eigenfunctions and eigenvalues of the general linear elliptic differential operator, Proc. Nat. Acad. Sci. USA, 39 (1953), 433-439.
![]() ![]() |
[5] |
F. Browder, Lusternik-Schnirelmann category and nonlinear elliptic eigenvalue problems, Bull. Amer. Math. Soc., 71 (1965), 644-648.
doi: 10.1090/S0002-9904-1965-11378-7.![]() ![]() ![]() |
[6] |
F. Browder, Variational methods for nonlinear elliptic eigenvalue problems, Bull. Amer. Math. Soc., 71 (1965), 176-183.
doi: 10.1090/S0002-9904-1965-11275-7.![]() ![]() ![]() |
[7] |
F. Browder,
Existence theorems for nonlinear partial differential equations, 1970 Global Analysis (Proc. Sympos. Pure Math., Vol. XVI, Berkeley, Calif., 1968), pp. 1-60, Amer. Math. Soc., Providence, R. I.
![]() ![]() |
[8] |
S.-G. Deng, Eigenvalues of the $ p (x) $-Laplacian Steklov problem, J. Math. Anal. Appl., 339 (2008), 925-937.
doi: 10.1016/j.jmaa.2007.07.028.![]() ![]() ![]() |
[9] |
X. Fan, Remarks on eigenvalue problems involving the $ p (x) $-Laplacian, J. Math. Anal. Appl., 352 (2009), 85-98.
doi: 10.1016/j.jmaa.2008.05.086.![]() ![]() ![]() |
[10] |
X. Fan, Q. Zhang and D. Zhao, Eigenvalues of $ p (x) $-Laplacian Dirichlet problem, J. Math. Anal. Appl., 302 (2005), 306-317.
doi: 10.1016/j.jmaa.2003.11.020.![]() ![]() ![]() |
[11] |
R. Filippucci, P. Pucci and V.D. Rădulescu, Existence and non-existence results for quasilinear elliptic exterior problems with nonlinear boundary conditions, Communications in Partial Differential Equations, 33 (2008), 706-717.
doi: 10.1080/03605300701518208.![]() ![]() ![]() |
[12] |
Y. Fu and Y. Shan, On the removability of isolated singular points for elliptic equations involving variable exponent, Adv. Nonlinear Anal., 5 (2016), 121-132.
doi: 10.1515/anona-2015-0055.![]() ![]() ![]() |
[13] |
O. Kovacik and J. Rakosnik, On spaces $ L^{p (x)} $ and $ W^{k, p (x)} $, Czechoslovak Mathematical Journal, 41 (1991), 592-618.
![]() ![]() |
[14] |
A. Le, Eigenvalue problems for the $ p $-Laplacian, Nonlinear Analysis: Theory, Methods & Applications, 64 (2006), 1057-1099.
doi: 10.1016/j.na.2005.05.056.![]() ![]() ![]() |
[15] |
L. A. Lusternik and L. G. Schnirelmann, Topological Methods in Variational Problems, Trudy
Inst. Mat. Mech. Moscow State Univ. (1930), 1-68.
![]() |
[16] |
M. Mihailescu and V. Răadulescu, A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462 (2006), 2625-2641.
doi: 10.1098/rspa.2005.1633.![]() ![]() ![]() |
[17] |
C. V. Pao,
Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.
![]() ![]() |
[18] |
V. Răadulescu, Nonlinear elliptic equations with variable exponent: old and new, Nonlinear Anal., 121 (2015), 336-369.
doi: 10.1016/j.na.2014.11.007.![]() ![]() ![]() |
[19] |
V. Răadulescu and D. Repovš, Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis, CRC Press, Taylor & Francis Group, Boca Raton FL, 2015.
doi: 10.1201/b18601.![]() ![]() ![]() |
[20] |
D. Repovš, Stationary waves of Schrödinger-type equations with variable exponent, Anal. Appl. (Singap.), 13 (2015), 645-661.
doi: 10.1142/S0219530514500420.![]() ![]() ![]() |
[21] |
M. Ruzicka,
Electrorheological Fluids: Modeling and Mathematical Theory, Springer Science & Business Media, New York, 2000.
![]() ![]() |
[22] |
S. Samko, On a progress in the theory of Lebesgue spaces with variable exponent: maximal and singular operators, Integral Transforms and Special Functions, 16 (2005), 461-482.
doi: 10.1080/10652460412331320322.![]() ![]() ![]() |
[23] |
O. Scherzer (Ed. ),
Handbook of Mathematical Methods in Imaging, Springer, Berlin, 2011.
![]() |
[24] |
J. Simon, Régularité de la solution d'une équation non linéaire dans $ {\mathbb R}^N $, Journées d'Analyse
Non Linéaire (Proc. Conf., Besan¸con, 1977), pp. 205-227, Lecture Notes in Math., 665, Springer, Berlin, 1978.
![]() |
[25] |
Z. Yücedag, Solutions of nonlinear problems involving $ p(x) $-Laplacian operator, Adv. Nonlinear Anal., 4 (2015), 285-293.
doi: 10.1515/anona-2015-0044.![]() ![]() ![]() |
[26] |
E. Zeidler, Nonlinear Functional Analysis and Its Applications, Ⅲ. Variational Methods and Optimization, Springer Science & Business Media, New York, 2013.
doi: 10.1007/978-1-4612-5020-3.![]() ![]() ![]() |
[27] |
E. Zeidler, The Lusternik-Schnirelmann theory for indefinite and not necessarily odd nonlinear operators and its applications, Nonlinear Analysis: Theory, Methods & Applications, 4 (1980), 451-489.
doi: 10.1016/0362-546X(80)90085-1.![]() ![]() ![]() |
[28] |
Q. Zhang, Existence of solutions for $ p (x) $-Laplacian equations with singular coefficients in $ {\mathbb R}^N $, J. Math. Anal. Appl., 348 (2008), 38-50.
doi: 10.1016/j.jmaa.2008.06.026.![]() ![]() ![]() |