We consider a nonlinear Robin problem driven by the p-Laplacian plus an indefinite potential. The reaction term is of arbitrary growth and only conditions near zero are imposed. Using critical point theory together with suitable truncation and perturbation techniques and comparison principles, we show that the problem admits a sequence of distinct smooth nodal solutions converging to zero in $C^1(\overline{Ω})$ .
Citation: |
[1] |
J. I. Diaz and J. E. Saa, Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires, C. R. Acad. Sci. Paris Sér. I Math., 305 (1987), 521-524.
![]() ![]() |
[2] |
M. Filippakis and N. Papageorgiou, Multiple constant sign and nodal solutions for nonlinear elliptic equations with the $p$-Laplacian, J. Differential Equations, 245 (2008), 1883-1922.
doi: 10.1016/j.jde.2008.07.004.![]() ![]() ![]() |
[3] |
G. Fragnelli, D. Mugnai and N. S. Papageorgiou, Positive and nodal solutions for parametric nonlinear Robin problems with indefinite potential, Discrete Contin. Dyn. Syst., 36 (2016), 6133-6166.
doi: 10.3934/dcds.2016068.![]() ![]() ![]() |
[4] |
L. Gasinski and N. S. Papageorgiou,
Nonlinear Analysis Series in Mathematical Analysis and Applications, 9. Chapman & Hall/CRC, Boca Raton, FL, 2006.
![]() ![]() |
[5] |
R. Kajikiya, A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations, J. Funct. Anal., 225 (2005), 352-370.
doi: 10.1016/j.jfa.2005.04.005.![]() ![]() ![]() |
[6] |
Z. Li and Z. Q. Wang, On Clark's theorem and its applications to partially sublinear problems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 1015-1037.
doi: 10.1016/j.anihpc.2014.05.002.![]() ![]() ![]() |
[7] |
G. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988), 1203-1219.
doi: 10.1016/0362-546X(88)90053-3.![]() ![]() ![]() |
[8] |
N. S. Papageorgiou and V. D. Rǎdulescu, Multiple solutions with precise sign for parametric Robin problems, J. Differential Equations, 256 (2014), 2449-2479.
doi: 10.1016/j.jde.2014.01.010.![]() ![]() ![]() |
[9] |
N.S. Papageorgiou and V. D. Rǎdulescu, Infinitely many nodal solutions for nonlinear, nonhomogeneous Robin problems, Adv. Nonlinear Stud., 16 (2016), 287-299.
doi: 10.1515/ans-2015-5040.![]() ![]() ![]() |
[10] |
N. S. Papageorgiou and V. D. Rǎdulescu, Nonlinear nonhomogeneous Robin problems with superlinear reaction term, Adv. Nonlinear Stud., 16 (2016), 737-764.
doi: 10.1515/ans-2016-0023.![]() ![]() ![]() |
[11] |
N. S. Papageorgiou, V. D. Rǎdulescu and D. D. Repovš, Positive solutions for perturbations of the Robin eigenvalue problem plus an indefinite potential, Discrete Contin. Dyn. Syst., 37 (2017), 2589-2618.
doi: 10.3934/dcds.2017111.![]() ![]() ![]() |
[12] |
N. S. Papageorgiou, V. D. Rǎdulescu and D. D. Repovš, Robin problems with indefinite linear part and competition phenomena, Commun. Pure Appl. Anal., 16 (2017), 1293-1314.
doi: 10.3934/cpaa.2017063.![]() ![]() ![]() |
[13] |
Z-Q. Wang, Nonlinear boundary value problems with concave nonlinearities near the origin, NoDEA Nonlinear Differential Equations Appl., 8 (2001), 15-33.
doi: 10.1007/PL00001436.![]() ![]() ![]() |