\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Hölder regularity for the Moore-Gibson-Thompson equation with infinite delay

  • * Corresponding author

    * Corresponding author 
The first author is supported by the Project POSTDOC DICYT-041633LY at the USACH. The second author is partially supported by CONICYT, under Fondecyt Grant number 1140258 and and CONICYT - PIA - Anillo ACT1416. The third author is supported by the Basque Government through the BERC 2014-2017 program and by Spanish Ministry of Economy and Competitiveness MINECO: BCAM Severo Ochoa excellence accreditation SEV-2013-0323 and GEAGAM, 644202 H2020-MSCA-RISE-2014.
Abstract Full Text(HTML) Figure(2) Related Papers Cited by
  • We characterize the well-posedness of a third order in time equation with infinite delay in Hölder spaces, solely in terms of spectral properties concerning the data of the problem. Our analysis includes the case of the linearized Kuznetzov and Westerwelt equations. We show in case of the Laplacian operator the new and surprising fact that for the standard memory kernel $g(t)=\frac{t^{ν-1}}{Γ(ν)}e^{-at}$ the third order problem is ill-posed whenever $0<ν ≤q 1$ and $a$ is inversely proportional to one of the terms of the given model.

    Mathematics Subject Classification: Primary:45N05;Secondary:45D05, 43A15.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Example of a parametric plot (${\mathfrak R}{\mathfrak e}\, \beta_2(\eta), {\mathfrak I}{\mathfrak m}\,\beta_2(\eta)$)

    Figure 2.  Example of a parametric plot (${\mathfrak R}{\mathfrak e}\, \beta_3(\eta), {\mathfrak I}{\mathfrak m}\,\beta_3(\eta)$)

  • [1] F. Alabau-BoussouiraP. Cannarsa and D. Sforza, Decay estimates for second order evolution equations with memory, J. Funct. Anal., 254 (2008), 1342-1372.  doi: 10.1016/j.jfa.2007.09.012.
    [2] D. Araya and C. Lizama, Existence of asymptotically almost automorphic solutions for a third order differential equation, E.J. Qualitative Theory of Diff. Eq., 53 (2012), 1-20. 
    [3] W. ArendtC. J. Batty and S. Bu, Fourier multipliers for Hölder continuous functions and maximal regularity, Studia Math., 160 (2004), 23-51.  doi: 10.4064/sm160-1-2.
    [4] W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-valued Laplace Transforms and Cauchy Problems Second edition, Monographs in Mathematics. 96 Birkhäuser, 2011. doi: 10.1007/978-3-0348-0087-7.
    [5] H. Brézis, Analyse Fonctionnelle Masson, Paris, 1983.
    [6] S. Bu, Well-posedness of second order degenerate differential equations in vector-valued function spaces, Studia Math., 214 (2013), 1-16.  doi: 10.4064/sm214-1-1.
    [7] S. Bu and Y. Fang, Periodic solutions for second order integro-differential equations with infinite delay in Banach spaces, Studia Math., 184 (2008), 103-119.  doi: 10.4064/sm184-2-1.
    [8] S. Bu and G. Cai, Well-posedness of second order degenerate differential equations in Hölder continuous function spaces, Expo. Math., 34 (2016), 223-236.  doi: 10.1016/j.exmath.2015.07.003.
    [9] G. Cai and S. Bu, Periodic solutions of third-order degenerate differential equations in vector-valued functional spaces, Israel J. Math., 212 (2016), 163-188.  doi: 10.1007/s11856-016-1282-0.
    [10] G. Cai and S. Bu, Well-posedness of second order degenerate integrodifferential equations with infinite delay in vector-valued function spaces, Math. Nachr., 289 (2016), 436-451.  doi: 10.1002/mana.201400112.
    [11] A. H. CaixetaI. Lasiecka and V. N. D. Cavalcanti, Global attractors for a third order in time nonlinear dynamics, J. Differential Equations, 261 (2016), 113-147.  doi: 10.1016/j.jde.2016.03.006.
    [12] R. Chill and S. Srivastava, $L_p$-maximal regularity for second order Cauchy problems, Math. Z., 251 (2005), 751-781.  doi: 10.1007/s00209-005-0815-8.
    [13] Ph. Clément and G. Da Prato, Existence and regularity results for an integral equation with infinite delay in a Banach space, Integral Equations and Operator Theory, 11 (1988), 480-500.  doi: 10.1007/BF01199303.
    [14] A. ConejeroC. Lizama and F. Rodenas, Chaotic behaviour of the solutions of the Moore-Gibson-Thomson equation, Appl. Math. Inf. Sci., 9 (2015), 1-16. 
    [15] C. Cuevas and C. Lizama, Well-posedness for a class of flexible structure in Hölder spaces, Math. Probl. Eng., vol, 2009 (2009), 1-13.  doi: 10.1155/2009/358329.
    [16] G. Da Prato and E. Sinestrari, Hölder regularity for non autonomous abstract parabolic equations, Israel J. Math., 42 (1982), 1-19.  doi: 10.1007/BF02765006.
    [17] F. Dell'oroI. Lasiecka and V. Pata, The Moore-Gibson-Thompson equation with memory in the critical case, J. Differential Equations, 261 (2016), 4188-4222.  doi: 10.1016/j.jde.2016.06.025.
    [18] F. Dell'oro and V. Pata, On the Moore-Gibson-Thompson equation and its relation to linear viscoelasticity, Appl. Math. Optim. (2016). doi: 10.1007/s00245-016-9365-1.
    [19] B. De Andrade and C. Lizama, Existence of asymptotically almost periodic solutions for damped wave equations, J. Math. Anal. Appl., 382 (2011), 761-771.  doi: 10.1016/j.jmaa.2011.04.078.
    [20] R. Denk, M. Hieber and J. Prüss, $R$-boundedness, Fourier multipliers and problems of elliptic and parabolic type Mem. Amer. Math. Soc. 166 (2003), no. 788. doi: 10.1090/memo/0788.
    [21] R. DenkJ. Prüss and R. Zacher, Maximal $Lp$-regularity of parabolic problems with boundary dynamics of relaxation type, J. Funct. Anal., 255 (2008), 3149-3187.  doi: 10.1016/j.jfa.2008.07.012.
    [22] K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations Graduate texts in Mathematics. 194 Springer, New York, 2000.
    [23] H. O. Fattorini, Second Order Linear Differential Equations in Banach Spaces North-Holland Mathematics Studies, 108, North-Holland, Amsterdam, 1985.
    [24] C. FernándezC. Lizama and V. Poblete, Maximal regularity for flexible structural systems in Lebesgue spaces, Math. Probl. Eng., vol, 2010 (2010), 1-5.  doi: 10.1155/2010/196956.
    [25] C. FernándezC. Lizama and V. Poblete, Regularity of solutions for a third order differential equation in Hilbert spaces, Appl. Math. Comput., 217 (2011), 8522-8533.  doi: 10.1016/j.amc.2011.03.056.
    [26] G. Gorain, Stabilization for the vibrations modeled by the 'standard linear model' of viscoelasticity, Proc. Indian Acad. Sci. (Math. Sci.), 120 (2010), 495-506.  doi: 10.1007/s12044-010-0038-8.
    [27] M. Haase. The Functional Calculus for Sectorial Operators Operator Theory: Advances and Applications, 169. Birkhäuser Verlag, Basel, 2006. doi: 10.1007/3-7643-7698-8.
    [28] B. KaltenbacherI. Lasiecka and R. Marchand, Well-posedness and exponential decay rates for the Moore-Gibson-Thompson equation arising in high intensity ultrasound, Control Cybernet., 40 (2011), 971-988. 
    [29] B. KaltenbacherI. Lasiecka and M. K. Pospieszalska, Well-posedness and exponential decay of the energy in the nonlinear Jordan-Moore-Gibson-Thompson equation arising in high intensity ultrasound, Math. Models Methods Appl. Sci., 22 (2012), 1-34.  doi: 10.1142/S0218202512500352.
    [30] B. Kaltenbacher and I. Lasiecka, Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions, Discrete Contin. Dyn. Syst. 2011, Dynamical systems, differential equations and applications. 8th AIMS Conference. Suppl. Vol. Ⅱ, 763-773
    [31] V. Keyantuo and C. Lizama, Hölder continuous solutions for integro-differential equations and maximal regularity, J. Differential Equations, 230 (2006), 634-660.  doi: 10.1016/j.jde.2006.07.018.
    [32] N. T. Lan, On the nonautonomous higher-order Cauchy problems, Differential Integral Equations, 14 (2001), 241-256. 
    [33] I. Lasiecka and X. Wang, Moore-Gibson-Thompson equation with memory, part I: Exponential decay energy, Z. Angew. Math. Phys., (2016), 67-17.  doi: 10.1007/s00033-015-0597-8.
    [34] I. Lasiecka and X. Wang, Moore-Gibson-Thompson equation with memory, part Ⅱ: General decay of energy, J. Differential Equations, 259 (2015), 7610-7635.  doi: 10.1016/j.jde.2015.08.052.
    [35] R. MarchandT. McDevitt and R. Triggiani, An abstract semigroup approach to the third-order Moore-Gibson-Thomson differential equation arising in high-intensity ultrasound: structural decomposition, spectral analysis, exponential stability, Math. Methods Appl. Sci., 35 (2012), 1896-1929.  doi: 10.1002/mma.1576.
    [36] S. A. Messaoudi and S.E. Mukiana, Existence and decay solutions to a viscoelastic plate equation, Electr. J. Diff. Equ., 22 (2016), 1-14. 
    [37] F. Neubrander, Well-posedness of higher order abstract Cauchy problems, Trans. Amer. Math. Soc., 295 (1986), 257-290.  doi: 10.2307/2000156.
    [38] J. Prüss, Evolutionary Integral Equations and Applications Monographs in Math. 87 Birkhäuser, 1993. doi: 10.1007/978-3-0348-8570-6.
    [39] J. Prüss, Decay properties for the solutions of a partial differential equation with memory, Arch. Math., 92 (2009), 158-173.  doi: 10.1007/s00013-008-2936-x.
    [40] T. J. Xiao and J. Liang, The Cauchy Problem for Higher-order Abstract Differential Equations Lecture Notes in Mathematics, 1701. Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-540-49479-9.
  • 加载中

Figures(2)

SHARE

Article Metrics

HTML views(394) PDF downloads(300) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return