Advanced Search
Article Contents
Article Contents

On stability of functional differential equations with rapidly oscillating coefficients

  • * Corresponding author

    * Corresponding author 
This work was supported by the Ministry of Education and Science of the Russian Federation under state order No. 3.1761.2017.
Abstract Full Text(HTML) Figure(1) Related Papers Cited by
  • The paper deals with the functional differential equation

    $\begin{equation*} y'(t)+∈t_0^{∞}μ_0(ds)\, y(t-s)+\sum_{k=1}^∞ e^{iω_kt}∈t_0^{∞}μ_k(ds)\, y(t-s)=f(t), \end{equation*}$

    where the functions $y$ and $f$ take their values in a Hilbert space, $ω_k∈\mathbb{R}$ , $μ_k$ are bounded operator-valued measures concentrated on $[0, +∞)$ , and $\sum_{k=1}^∞\Vertμ_k\Vert < ∞$ . It is shown that the equation is stable provided the unperturbed equation $y'(t)+\int{{_0^{∞}}}μ_0(ds)\, y(t-s)=f(t)$ is at least strictly passive (and consequently stable) and a special estimate holds; this estimate is certainly true if $|ω_k|$ are sufficiently large.

    Mathematics Subject Classification: Primary:34K20;Secondary:34K06, 26A33, 34K33.


    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Examples of the images of characteristic functions.

  • [1] N. Bourbaki, Éléments de mathématique. Fasc. XXXII. Théories spectrales. Chapitre I: Algébres normées. Chapitre II: Groupes localement compacts commutatifs Actualités Scientifiques et Industrielles, No. 1332, Hermann, Paris, 1967 (in French).
    [2] N. Bourbaki, Éléments de mathématique. Premi`ere partie. Les structures fondamentales de l’analyse. Livre VI. Intégration., Hermann, Paris, Chapitres 1-4, 1965 (in French); English translation in Springer-Verlag, Berlin, Chapters 1-4, 2004.
    [3] A. Defant and K. FloretTensor Norms and Operator Ideals, vol. 176 of North-Holland Mathematics Studies, vol. 176 of North-Holland Mathematics Studies, North-Holland, Amsterdam-London{New York-Tokyo, (1993). 
    [4] C. Desoer and M. Vidyasagar, Feedback Systems: Input-output Properties, Academic Press, New York{London, (1975). 
    [5] J. J. F. Fournier and J. Stewart, Amalgams of $L^p$ and $l^q$, Bull. Amer. Math. Soc. (N.S.), 13 (1985), 1-21.  doi: 10.1090/S0273-0979-1985-15350-9.
    [6] M. Gil', Stability of functional differential equations with oscillating coefficients and distributed delays, Differential Equations and Applications, 3 (2011), 11-19.  doi: 10.7153/dea-03-02.
    [7] M. Gil', Stability of vector functional differential equations with oscillating coefficients, Journal of Advanced Research in Dynamical and Control Systems, 3 (2011), 26-33. 
    [8] R. E. Greene and S. G. Krantz, Function Theory of One Complex Variable vol. 40 of Graduate Studies in Mathematics 3rd edition, Amer. Math. Soc. , Providence, RI, 2006. doi: 10.1090/gsm/040.
    [9] J. K. Hale and S. M. Verduyn Lunel, Averaging in infinite dimensions, Journal of Integral Equations and Applications, 2 (1990), 463-494.  doi: 10.1216/jiea/1181075583.
    [10] J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations vol. 99 of Applied Mathematical Sciences, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4342-7.
    [11] N. Higham, Stable iterations for the matrix square root, Numerical Algorithms, 15 (1997), 227-242.  doi: 10.1023/A:1019150005407.
    [12] E. Hille and R. S. Phillips, Functional Analysis and Semi-groups vol. 31 of American Mathematical Society Colloquium Publications, Amer. Math. Soc. , Providence, Rhode Island, 1957.
    [13] Y. Hino, S. Murakami and T. Naito, Functional-differential Equations with Infinite Delay vol. 1473 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1991. doi: 10.1007/BFb0084432.
    [14] T. Kaczorek and K. RogowskiFractional Linear Systems and Electrical Circuits, vol. 13 of Studies in Systems, Decision and Control, vol. 13 of Studies in Systems, Decision and Control, Springer, Heidelberg-New York-Dordrecht- London, (2015). 
    [15] V. Kolmanovskii and A. Myshkis, Introduction to The Theory and Applications of Functional Differential Equations vol. 463 of Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, 1999. doi: 10.1007/978-94-017-1965-0.
    [16] N. M. Krylov and N. N. Bogoliubov, Introduction to Nonlinear Mechanics Princeton University Press, Princeton, 1949.
    [17] V. G. Kurbatov, Functional Differential Operators and Equations vol. 473 of Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, 1999.
    [18] V. G. Kurbatov, Efficient estimation in the averaging principle, Avtomatika i Telemekhanika, 8, 50-55 (in Russian); English translation in Automation and Remote Control, 50 (1989), 1040{1045.
    [19] V. G. Kurbatov, The effect of rapidly oscillating feedbacks on stability, Doklady Akademii Nauk SSSR, 316 (1991), 558-561 (in Russian); English translation in Doklady Mathematics, 36 (1991), 20-22.
    [20] V. G. Kurbatov and I. S. Frolov, An operator variant of the maximum principle, Mat. Zametki, 36 (1984), 531-535. 
    [21] S. Kwapień, Isomorphic characterization of inner product spaces by orthogonal series with vector valued coefficients, Studia Math., 44 (1972), 583-595. 
    [22] M. Lakrib and T. Sari, Time averaging for ordinary differential equations and retarded functional differential equations, Electronic Journal of Differential Equations, 2010 (2010), 1-24. 
    [23] B. Lehman, The influence of delays when averaging slow and fast oscillating systems: overview, IMA Journal of Mathematical Control and Information, 19 (2002), 201-215. 
    [24] J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Vol. I, vol. Band 181 of Die Grundlehren der mathematischen Wissenschaften, Springer- Verlag, Berlin-Heidelberg-New York, 1972, Translated from French.
    [25] R. Ortega, J. Perez, P. Nicklasson and H. Sira-Ramirez, Passivity-based Control of Euler-Lagrange Systems: Mechanical, Electrical and Electromechanical Applications Communications and Control Engineering, Springer-Verlag, London, 1998.
    [26] W. Rudin, Functional Analysis 2nd edition, International Series in Pure and Applied Mathematics, McGraw-Hill Inc. , New York, 1991.
    [27] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives Nauka i Tekhnika, Minsk, 1987 (in Russian); English translation in Gordon and Breach Science Publishers, Yverdon, 1993.
    [28] J. A. Sanders, F. Verhulst and J. A. Murdock, Averaging Methods in Nonlinear Dynamical Systems vol. 59 of Applied Mathematical Sciences, 2nd edition, Springer, New York, 2007.
    [29] L. Schwartz, Théorie des distributions á valeurs vectorielles. I, Ann. Inst. Fourier. Grenoble, 7 (1957), 1-141. 
    [30] L. Schwartz, Théorie des distributions á valeurs vectorielles. II, Ann. Inst. Fourier. Grenoble, 8 (1958), 1-209. 
    [31] L. Schwartz, Théorie des distributions Publications de l'Institut de Mathématique de l'Université de Strasbourg, No. IX-X. Nouvelle édition, entiérement corrigée, refondue et augmentée, Hermann, Paris, 1966.
    [32] R. L. Stratonovich, Conditional Markov Processes and Their Application to The Theory of Optimal Control Moscow State University, Moscow, 1966 (in Russian); English translation in American Elsevier, New York, 1968.
    [33] A. van der Schaft, $L_2$-gain and Passivity Techniques in Nonlinear Control, vol. 218 of Lecture Notes in Control and Information Sciences, Springer{Verlag, Berlin{Heidelberg{New Yor, (1996).  doi: 10.1007/3-540-76074-1.
    [34] V. S. Vladimirov, Generalized Functions in Mathematical Physics Mir Publishers, Moscow, 1979; Translated from the second Russian edition.
    [35] J. C. Willems, The Analysis of Feedback Systems The MIT Press, Cambridge, 1971.
    [36] P. P. Zabreiko and O. M. Petrova, Theorem on the continuation of bounded solutions for differential equations and the averaging principle, Sibirskii Matematicheskii Zhurnal, 21 (1980), 50-61 (in Russian); English translation in Siberian Mathematical Journal, 21 (1980), 517-526.
  • 加载中



Article Metrics

HTML views(315) PDF downloads(205) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint