
-
Previous Article
Biharmonic systems involving multiple Rellich-type potentials and critical Rellich-Sobolev nonlinearities
- CPAA Home
- This Issue
- Next Article
Beltrami equations in the plane and Sobolev regularity
Departamento de Matemáticas, Universidad Autónoma de Madrid -ICMAT ,Ciudad Universitaria de Cantoblanco -28049 Madrid, Spain |
New results regarding the Sobolev regularity of the principal solution of the linear Beltrami equation $\bar{\partial} f = μ \partial f + ν \overline{\partial f}$ for discontinuous Beltrami coefficients $μ$ and $ν$ are obtained, using Kato-Ponce commutators, obtaining that $\overline \partial f$ belongs to a Sobolev space with the same smoothness as the coefficients but some loss in the integrability parameter. A conjecture on the cases where the limitations of the method do not work is raised.
References:
[1] |
K. Astala,
Area distortion of quasiconformal mappings, Acta Math., 173 (1994), 37-60.
|
[2] |
K. Astala, T. Iwaniec and G. Martin,
Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane, vol. 48 of Princeton Mathematical Series, Princeton University Press, 2009. |
[3] |
K. Astala, T. Iwaniec and E. Saksman,
Beltrami operators in the plane, Duke Math. J., 107 (2001), 27-56.
|
[4] |
A. L. Baisón, A. Clop, R. Giova, J. Orobitg and A. P. di Napoli,
Fractional differentiability for solutions of nonlinear elliptic equations, Potential Anal, (), 1-28.
|
[5] |
A. L. Baisón,
La Ecuación de Beltrami Generalizada y Otras Ecuaciones Elípticas, PhD thesis, Universitat Autónoma de Barcelona, 2016. |
[6] |
A. L. Baisón, A. Clop and J. Orobitg,
Beltrami equations with coefficient in the fractional Sobolev space $W^{θ, \frac2θ}$, Proc. Amer. Math. Soc., 145 (2017), 139-149.
|
[7] |
A. Clop, D. Faraco, J. Mateu, J. Orobitg and X. Zhong,
Beltrami equations with coefficient in the Sobolev space $W^{1, p}$, Publ. Mat., 53 (2009), 197-230.
|
[8] |
A. Clop, D. Faraco and A. Ruiz,
Stability of Calderón's inverse conductivity problem in the plane for discontinuous conductivities, Inverse Probl. Imaging, 4 (2010), 49-91.
|
[9] |
V. Cruz, J. Mateu and J. Orobitg,
Beltrami equation with coefficient in Sobolev and Besov spaces, Canad. J. Math., 65 (2013), 1217-1235.
|
[10] |
M. Frazier, R. H. Torres and G. Weiss,
The boundedness of Calderón-Zygmund Operators on the spaces $F^{α, q}_p$., Rev. Mat. Iberoam., 4 (1988), 41-72.
|
[11] |
L. Grafakos,
Classical Fourier Analysis, vol. 249 of Graduate Texts in Mathematics, 2nd edition, New York: Springer, 2008. |
[12] |
S. Hofmann,
An off-diagonal T1 Theorem and applications, J. Funct. Anal., 160 (1998), 581-622.
|
[13] |
T. Iwaniec, $L^p$-theory of quasiregular mappings, in Quasiconformal space mappings, Springer
Berlin Heidelberg, 1992, 39–64. |
[14] |
M. Prats, Sobolev regularity of quasiconformal mappings on domains,
J. Anal. Math. , to appear, arXiv: 1507.04332 [math. CA]. |
[15] |
T. Runst and W. Sickel,
Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, vol. 3 of De Gruyter series in nonlinear analysis and applications, Walter de Gruyter; Berlin; New York, 1996. |
[16] |
E. M. Stein,
Singular Integrals and Differentiability Properties of Functions, vol. 30 of Princeton Mathematical Series, Princeton University Press, 1970. |
[17] |
H. Triebel,
Interpolation Theory, Function Spaces, Differential Operators, vol. 18 of North-Holland Mathematical Library, North-Holland, 1978. |
[18] |
H. Triebel,
Theory of Function Spaces, Reprint (2010) edition, Birkhäuser, 1983. |
[19] |
H. Triebel,
Theory of Function Spaces III, vol. 100 of Monographs in Mathematics, Birkhäuser, 2006. |
show all references
References:
[1] |
K. Astala,
Area distortion of quasiconformal mappings, Acta Math., 173 (1994), 37-60.
|
[2] |
K. Astala, T. Iwaniec and G. Martin,
Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane, vol. 48 of Princeton Mathematical Series, Princeton University Press, 2009. |
[3] |
K. Astala, T. Iwaniec and E. Saksman,
Beltrami operators in the plane, Duke Math. J., 107 (2001), 27-56.
|
[4] |
A. L. Baisón, A. Clop, R. Giova, J. Orobitg and A. P. di Napoli,
Fractional differentiability for solutions of nonlinear elliptic equations, Potential Anal, (), 1-28.
|
[5] |
A. L. Baisón,
La Ecuación de Beltrami Generalizada y Otras Ecuaciones Elípticas, PhD thesis, Universitat Autónoma de Barcelona, 2016. |
[6] |
A. L. Baisón, A. Clop and J. Orobitg,
Beltrami equations with coefficient in the fractional Sobolev space $W^{θ, \frac2θ}$, Proc. Amer. Math. Soc., 145 (2017), 139-149.
|
[7] |
A. Clop, D. Faraco, J. Mateu, J. Orobitg and X. Zhong,
Beltrami equations with coefficient in the Sobolev space $W^{1, p}$, Publ. Mat., 53 (2009), 197-230.
|
[8] |
A. Clop, D. Faraco and A. Ruiz,
Stability of Calderón's inverse conductivity problem in the plane for discontinuous conductivities, Inverse Probl. Imaging, 4 (2010), 49-91.
|
[9] |
V. Cruz, J. Mateu and J. Orobitg,
Beltrami equation with coefficient in Sobolev and Besov spaces, Canad. J. Math., 65 (2013), 1217-1235.
|
[10] |
M. Frazier, R. H. Torres and G. Weiss,
The boundedness of Calderón-Zygmund Operators on the spaces $F^{α, q}_p$., Rev. Mat. Iberoam., 4 (1988), 41-72.
|
[11] |
L. Grafakos,
Classical Fourier Analysis, vol. 249 of Graduate Texts in Mathematics, 2nd edition, New York: Springer, 2008. |
[12] |
S. Hofmann,
An off-diagonal T1 Theorem and applications, J. Funct. Anal., 160 (1998), 581-622.
|
[13] |
T. Iwaniec, $L^p$-theory of quasiregular mappings, in Quasiconformal space mappings, Springer
Berlin Heidelberg, 1992, 39–64. |
[14] |
M. Prats, Sobolev regularity of quasiconformal mappings on domains,
J. Anal. Math. , to appear, arXiv: 1507.04332 [math. CA]. |
[15] |
T. Runst and W. Sickel,
Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, vol. 3 of De Gruyter series in nonlinear analysis and applications, Walter de Gruyter; Berlin; New York, 1996. |
[16] |
E. M. Stein,
Singular Integrals and Differentiability Properties of Functions, vol. 30 of Princeton Mathematical Series, Princeton University Press, 1970. |
[17] |
H. Triebel,
Interpolation Theory, Function Spaces, Differential Operators, vol. 18 of North-Holland Mathematical Library, North-Holland, 1978. |
[18] |
H. Triebel,
Theory of Function Spaces, Reprint (2010) edition, Birkhäuser, 1983. |
[19] |
H. Triebel,
Theory of Function Spaces III, vol. 100 of Monographs in Mathematics, Birkhäuser, 2006. |




[1] |
Haim Brezis, Petru Mironescu. Composition in fractional Sobolev spaces. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 241-246. doi: 10.3934/dcds.2001.7.241 |
[2] |
Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure and Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255 |
[3] |
Younghun Hong, Yannick Sire. On Fractional Schrödinger Equations in sobolev spaces. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2265-2282. doi: 10.3934/cpaa.2015.14.2265 |
[4] |
Fengbo Hang, Fanghua Lin. Topology of Sobolev mappings IV. Discrete and Continuous Dynamical Systems, 2005, 13 (5) : 1097-1124. doi: 10.3934/dcds.2005.13.1097 |
[5] |
Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3415-3445. doi: 10.3934/dcds.2021002 |
[6] |
Miloud Moussai. Application of the bernstein polynomials for solving the nonlinear fractional type Volterra integro-differential equation with caputo fractional derivatives. Numerical Algebra, Control and Optimization, 2021 doi: 10.3934/naco.2021021 |
[7] |
Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete and Continuous Dynamical Systems - S, 2021, 14 (2) : 745-767. doi: 10.3934/dcdss.2020365 |
[8] |
Ioannis Markou. Hydrodynamic limit for a Fokker-Planck equation with coefficients in Sobolev spaces. Networks and Heterogeneous Media, 2017, 12 (4) : 683-705. doi: 10.3934/nhm.2017028 |
[9] |
Van Duong Dinh. On the Cauchy problem for the nonlinear semi-relativistic equation in Sobolev spaces. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1127-1143. doi: 10.3934/dcds.2018047 |
[10] |
Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control and Related Fields, 2022, 12 (1) : 115-146. doi: 10.3934/mcrf.2021004 |
[11] |
Fahd Jarad, Thabet Abdeljawad. Generalized fractional derivatives and Laplace transform. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 709-722. doi: 10.3934/dcdss.2020039 |
[12] |
Guangze Gu, Xianhua Tang, Youpei Zhang. Ground states for asymptotically periodic fractional Kirchhoff equation with critical Sobolev exponent. Communications on Pure and Applied Analysis, 2019, 18 (6) : 3181-3200. doi: 10.3934/cpaa.2019143 |
[13] |
Lassaad Aloui, Imen El Khal El Taief. The Kato smoothing effect for the nonlinear regularized Schrödinger equation on compact manifolds. Mathematical Control and Related Fields, 2020, 10 (4) : 699-714. doi: 10.3934/mcrf.2020016 |
[14] |
Fahd Jarad, Thabet Abdeljawad. Variational principles in the frame of certain generalized fractional derivatives. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 695-708. doi: 10.3934/dcdss.2020038 |
[15] |
Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511 |
[16] |
Luiz Gustavo Farah. Local solutions in Sobolev spaces and unconditional well-posedness for the generalized Boussinesq equation. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1521-1539. doi: 10.3934/cpaa.2009.8.1521 |
[17] |
Jun Yang, Yaotian Shen. Weighted Sobolev-Hardy spaces and sign-changing solutions of degenerate elliptic equation. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2565-2575. doi: 10.3934/cpaa.2013.12.2565 |
[18] |
Ming Wang. Sharp global well-posedness of the BBM equation in $L^p$ type Sobolev spaces. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5763-5788. doi: 10.3934/dcds.2016053 |
[19] |
Kotaro Tsugawa. Existence of the global attractor for weakly damped, forced KdV equation on Sobolev spaces of negative index. Communications on Pure and Applied Analysis, 2004, 3 (2) : 301-318. doi: 10.3934/cpaa.2004.3.301 |
[20] |
G. Fonseca, G. Rodríguez-Blanco, W. Sandoval. Well-posedness and ill-posedness results for the regularized Benjamin-Ono equation in weighted Sobolev spaces. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1327-1341. doi: 10.3934/cpaa.2015.14.1327 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]