March  2018, 17(2): 333-346. doi: 10.3934/cpaa.2018019

Biharmonic systems involving multiple Rellich-type potentials and critical Rellich-Sobolev nonlinearities

School of Mathematics and Statistics, South-Central University for Nationalities, Wuhan 430074, China

* Corresponding author

Received  February 2017 Revised  June 2017 Published  March 2018

In this paper, the minimizers of a Rellich-Sobolev constant are firstly investigated. Secondly, a system of biharmonic equations is investigated, which involves multiple Rellich-type terms and strongly coupled critical Rellich-Sobolev terms. The existence of nontrivial solutions to the system is established by variational arguments.

Citation: Dongsheng Kang, Liangshun Xu. Biharmonic systems involving multiple Rellich-type potentials and critical Rellich-Sobolev nonlinearities. Communications on Pure and Applied Analysis, 2018, 17 (2) : 333-346. doi: 10.3934/cpaa.2018019
References:
[1]

A. Ambrosetti and H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381. 

[2]

M. Bhakta and R. Musina, Entire solutions for a class of variational problems involving the biharmonic operator and Rellich potentials, Nonlinear Anal., 75 (2012), 3836-3848. 

[3]

H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477. 

[4]

P. Caldiroli and R. Musina, Caffarelli-Kohn-Nirenberg type inequalities for the weighted biharmonic operator in cones, Milan J. Math., 79 (2011), 657-687. 

[5]

L. D'Ambrosio and E. Jannelli, Nonlinear critical problems for the biharmonic operator with Hardy potential, Calc. Var. Partial Differential Equations, 54 (2015), 365-396. 

[6]

V. Felli and S. Terracini, Elliptic equations with multi-singular inverse-square potentials and critical nonlinearity, Comm. Partial Differential Equations, 31 (2006), 469-495. 

[7]

N. Ghoussoub and C. Yuan, Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents, Trans. Amer. Math. Soc., 352 (2000), 5703-5743. 

[8]

E. Jannelli, Critical behavior for the polyharmonic operator with Hardy potential, Nonlinear Anal., 119 (2015), 443-456. 

[9]

E. Jannelli and A. Loiudice, Critical polyharmonic problems with singular nonlinearities, Nonlinear Anal., 110 (2014), 77-96. 

[10]

D. Kang, Concentration compactness principles for the systems of elliptic equations, Differ. Equ. Appl., 4 (2012), 435-444. 

[11]

D. Kang, Elliptic systems involving critical nonlinearities and different Hardy-type terms, J. Math. Anal. Appl., 420 (2014), 930-941. 

[12]

D. Kang and L. Xu, Asymptotic behavior and existence results for the biharmonic problems involving Rellich potentials, J. Math. Anal. Appl., 455 (2017), 1365-1382. 

[13]

D. Kang and J. Yu, Systems of critical elliptic equations involving Hardy-type terms and large ranges of parameters, Appl. Math. Lett., 46 (2015), 77-82. 

[14]

D. Kang and J. Yu, Minimizers to Rayleigh quotients of critical elliptic systems involving different Hardy-type terms, Appl. Math. Lett., 57 (2016), 97-103. 

[15]

E. Lieb and M. Loss, Analysis, 2nd edition, American Mathematical Society, Providence RI, 2001.

[16]

P. L. Lions, The concentration compactness principle in the calculus of variations, the limit case(Ⅰ), Revista Mathematica Iberoamericana, 1 (1985), 145-201. 

[17]

P. L. Lions, The concentration compactness principle in the calculus of variations, the limit case(Ⅱ), Revista Mathematica Iberoamericana, 1 (1985), 45-121. 

[18]

F. Rellich, Perturbation Theory of Eigenvalue Problems, Courant Institute of Mathematical Sciences, New York University, New York, 1954.

[19]

S. Terracini, On positive entire solutions to a class of equations with a singular coefficient and critical exponent, Adv. Differential Equations, 1 (1996), 241-264. 

[20]

M. Willem, Analyse Fonctionnelle Élémentaire, Cassini Éditeurs, Paris, 2003.

show all references

References:
[1]

A. Ambrosetti and H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381. 

[2]

M. Bhakta and R. Musina, Entire solutions for a class of variational problems involving the biharmonic operator and Rellich potentials, Nonlinear Anal., 75 (2012), 3836-3848. 

[3]

H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477. 

[4]

P. Caldiroli and R. Musina, Caffarelli-Kohn-Nirenberg type inequalities for the weighted biharmonic operator in cones, Milan J. Math., 79 (2011), 657-687. 

[5]

L. D'Ambrosio and E. Jannelli, Nonlinear critical problems for the biharmonic operator with Hardy potential, Calc. Var. Partial Differential Equations, 54 (2015), 365-396. 

[6]

V. Felli and S. Terracini, Elliptic equations with multi-singular inverse-square potentials and critical nonlinearity, Comm. Partial Differential Equations, 31 (2006), 469-495. 

[7]

N. Ghoussoub and C. Yuan, Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents, Trans. Amer. Math. Soc., 352 (2000), 5703-5743. 

[8]

E. Jannelli, Critical behavior for the polyharmonic operator with Hardy potential, Nonlinear Anal., 119 (2015), 443-456. 

[9]

E. Jannelli and A. Loiudice, Critical polyharmonic problems with singular nonlinearities, Nonlinear Anal., 110 (2014), 77-96. 

[10]

D. Kang, Concentration compactness principles for the systems of elliptic equations, Differ. Equ. Appl., 4 (2012), 435-444. 

[11]

D. Kang, Elliptic systems involving critical nonlinearities and different Hardy-type terms, J. Math. Anal. Appl., 420 (2014), 930-941. 

[12]

D. Kang and L. Xu, Asymptotic behavior and existence results for the biharmonic problems involving Rellich potentials, J. Math. Anal. Appl., 455 (2017), 1365-1382. 

[13]

D. Kang and J. Yu, Systems of critical elliptic equations involving Hardy-type terms and large ranges of parameters, Appl. Math. Lett., 46 (2015), 77-82. 

[14]

D. Kang and J. Yu, Minimizers to Rayleigh quotients of critical elliptic systems involving different Hardy-type terms, Appl. Math. Lett., 57 (2016), 97-103. 

[15]

E. Lieb and M. Loss, Analysis, 2nd edition, American Mathematical Society, Providence RI, 2001.

[16]

P. L. Lions, The concentration compactness principle in the calculus of variations, the limit case(Ⅰ), Revista Mathematica Iberoamericana, 1 (1985), 145-201. 

[17]

P. L. Lions, The concentration compactness principle in the calculus of variations, the limit case(Ⅱ), Revista Mathematica Iberoamericana, 1 (1985), 45-121. 

[18]

F. Rellich, Perturbation Theory of Eigenvalue Problems, Courant Institute of Mathematical Sciences, New York University, New York, 1954.

[19]

S. Terracini, On positive entire solutions to a class of equations with a singular coefficient and critical exponent, Adv. Differential Equations, 1 (1996), 241-264. 

[20]

M. Willem, Analyse Fonctionnelle Élémentaire, Cassini Éditeurs, Paris, 2003.

[1]

Wenmin Gong, Guangcun Lu. On Dirac equation with a potential and critical Sobolev exponent. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2231-2263. doi: 10.3934/cpaa.2015.14.2231

[2]

M. Ben Ayed, Abdelbaki Selmi. Asymptotic behavior and existence results for a biharmonic equation involving the critical Sobolev exponent in a five-dimensional domain. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1705-1722. doi: 10.3934/cpaa.2010.9.1705

[3]

Yu Su, Zhaosheng Feng. Ground state solutions and decay estimation of Choquard equation with critical exponent and Dipole potential. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022112

[4]

Zongming Guo, Xiaohong Guan, Yonggang Zhao. Uniqueness and asymptotic behavior of solutions of a biharmonic equation with supercritical exponent. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2613-2636. doi: 10.3934/dcds.2019109

[5]

Zifei Shen, Fashun Gao, Minbo Yang. On critical Choquard equation with potential well. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3567-3593. doi: 10.3934/dcds.2018151

[6]

Maurizio Grasselli, Vittorino Pata. On the damped semilinear wave equation with critical exponent. Conference Publications, 2003, 2003 (Special) : 351-358. doi: 10.3934/proc.2003.2003.351

[7]

Federica Sani. A biharmonic equation in $\mathbb{R}^4$ involving nonlinearities with critical exponential growth. Communications on Pure and Applied Analysis, 2013, 12 (1) : 405-428. doi: 10.3934/cpaa.2013.12.405

[8]

Fengshuang Gao, Yuxia Guo. Multiple solutions for a critical quasilinear equation with Hardy potential. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 1977-2003. doi: 10.3934/dcdss.2019128

[9]

Xu Zhang, Shiwang Ma, Qilin Xie. Bound state solutions of Schrödinger-Poisson system with critical exponent. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 605-625. doi: 10.3934/dcds.2017025

[10]

T. Ogawa. The degenerate drift-diffusion system with the Sobolev critical exponent. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 875-886. doi: 10.3934/dcdss.2011.4.875

[11]

Mengyao Chen, Qi Li, Shuangjie Peng. Bound states for fractional Schrödinger-Poisson system with critical exponent. Discrete and Continuous Dynamical Systems - S, 2021, 14 (6) : 1819-1835. doi: 10.3934/dcdss.2021038

[12]

Jing Zhang, Shiwang Ma. Positive solutions of perturbed elliptic problems involving Hardy potential and critical Sobolev exponent. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1999-2009. doi: 10.3934/dcdsb.2016033

[13]

Fengshuang Gao, Yuxia Guo. Infinitely many solutions for quasilinear equations with critical exponent and Hardy potential in $ \mathbb{R}^N $. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5591-5616. doi: 10.3934/dcds.2020239

[14]

Yu Su, Zhaosheng Feng. Ground state solutions for the fractional problems with dipole-type potential and critical exponent. Communications on Pure and Applied Analysis, 2022, 21 (6) : 1953-1968. doi: 10.3934/cpaa.2021111

[15]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[16]

Sergey Zelik. Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent. Communications on Pure and Applied Analysis, 2004, 3 (4) : 921-934. doi: 10.3934/cpaa.2004.3.921

[17]

Yinbin Deng, Wentao Huang. Positive ground state solutions for a quasilinear elliptic equation with critical exponent. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4213-4230. doi: 10.3934/dcds.2017179

[18]

Jiayun Lin, Kenji Nishihara, Jian Zhai. Critical exponent for the semilinear wave equation with time-dependent damping. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4307-4320. doi: 10.3934/dcds.2012.32.4307

[19]

Ting Guo, Xianhua Tang, Qi Zhang, Zu Gao. Nontrivial solutions for the choquard equation with indefinite linear part and upper critical exponent. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1563-1579. doi: 10.3934/cpaa.2020078

[20]

Yinbin Deng, Shuangjie Peng, Li Wang. Existence of multiple solutions for a nonhomogeneous semilinear elliptic equation involving critical exponent. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 795-826. doi: 10.3934/dcds.2012.32.795

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (278)
  • HTML views (226)
  • Cited by (1)

Other articles
by authors

[Back to Top]