\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Biharmonic systems involving multiple Rellich-type potentials and critical Rellich-Sobolev nonlinearities

  • * Corresponding author

    * Corresponding author 
Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, the minimizers of a Rellich-Sobolev constant are firstly investigated. Secondly, a system of biharmonic equations is investigated, which involves multiple Rellich-type terms and strongly coupled critical Rellich-Sobolev terms. The existence of nontrivial solutions to the system is established by variational arguments.

    Mathematics Subject Classification: Primary:35J60, 31B30;Secondary:35B33, 35B25.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] A. Ambrosetti and H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381. 
    [2] M. Bhakta and R. Musina, Entire solutions for a class of variational problems involving the biharmonic operator and Rellich potentials, Nonlinear Anal., 75 (2012), 3836-3848. 
    [3] H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477. 
    [4] P. Caldiroli and R. Musina, Caffarelli-Kohn-Nirenberg type inequalities for the weighted biharmonic operator in cones, Milan J. Math., 79 (2011), 657-687. 
    [5] L. D'Ambrosio and E. Jannelli, Nonlinear critical problems for the biharmonic operator with Hardy potential, Calc. Var. Partial Differential Equations, 54 (2015), 365-396. 
    [6] V. Felli and S. Terracini, Elliptic equations with multi-singular inverse-square potentials and critical nonlinearity, Comm. Partial Differential Equations, 31 (2006), 469-495. 
    [7] N. Ghoussoub and C. Yuan, Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents, Trans. Amer. Math. Soc., 352 (2000), 5703-5743. 
    [8] E. Jannelli, Critical behavior for the polyharmonic operator with Hardy potential, Nonlinear Anal., 119 (2015), 443-456. 
    [9] E. Jannelli and A. Loiudice, Critical polyharmonic problems with singular nonlinearities, Nonlinear Anal., 110 (2014), 77-96. 
    [10] D. Kang, Concentration compactness principles for the systems of elliptic equations, Differ. Equ. Appl., 4 (2012), 435-444. 
    [11] D. Kang, Elliptic systems involving critical nonlinearities and different Hardy-type terms, J. Math. Anal. Appl., 420 (2014), 930-941. 
    [12] D. Kang and L. Xu, Asymptotic behavior and existence results for the biharmonic problems involving Rellich potentials, J. Math. Anal. Appl., 455 (2017), 1365-1382. 
    [13] D. Kang and J. Yu, Systems of critical elliptic equations involving Hardy-type terms and large ranges of parameters, Appl. Math. Lett., 46 (2015), 77-82. 
    [14] D. Kang and J. Yu, Minimizers to Rayleigh quotients of critical elliptic systems involving different Hardy-type terms, Appl. Math. Lett., 57 (2016), 97-103. 
    [15] E. Lieb and M. Loss, Analysis, 2nd edition, American Mathematical Society, Providence RI, 2001.
    [16] P. L. Lions, The concentration compactness principle in the calculus of variations, the limit case(Ⅰ), Revista Mathematica Iberoamericana, 1 (1985), 145-201. 
    [17] P. L. Lions, The concentration compactness principle in the calculus of variations, the limit case(Ⅱ), Revista Mathematica Iberoamericana, 1 (1985), 45-121. 
    [18] F. Rellich, Perturbation Theory of Eigenvalue Problems, Courant Institute of Mathematical Sciences, New York University, New York, 1954.
    [19] S. Terracini, On positive entire solutions to a class of equations with a singular coefficient and critical exponent, Adv. Differential Equations, 1 (1996), 241-264. 
    [20] M. Willem, Analyse Fonctionnelle Élémentaire, Cassini Éditeurs, Paris, 2003.
  • 加载中
SHARE

Article Metrics

HTML views(560) PDF downloads(315) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return