-
Previous Article
Nonexistence of nonconstant positive steady states of a diffusive predator-prey model
- CPAA Home
- This Issue
-
Next Article
Stability and convergence of an hybrid finite volume-finite element method for a multiphasic incompressible fluid model
On the effect of higher order derivatives of initial data on the blow-up set for a semilinear heat equation
Department of Mathematical and Systems Engineering, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu 432-8561, Japan |
$\begin{equation}\label{eq:P}\tag{P}≤\left\{\begin{array}{ll}\partial_t u=Δ u+u^p, &x∈ Ω, \, \, \, t>0, \\ u(x, t)=0, &x∈\partialΩ, \, \, \, t>0, \\ u(x, 0)=u_0(x)≥ 0, &x∈ Ω, \end{array}\right.\end{equation}$ |
$\partial_t=\partial/\partial t$ |
$p>1$ |
$N≥ 1$ |
$Ω\subset {\bf R}^N$ |
$u_0$ |
$\overline{Ω}$ |
$u_0(x)=λ\varphi(x)$ |
$\varphi$ |
$λ>0$ |
$\varphi$ |
$\varphi$ |
$Δ\varphi$ |
$u_0(x)=λ\varphi(x)$ |
$u_0(x)=λ+\varphi(x)$ |
References:
[1] |
X. Y. Chen and H. Matano,
Convergence, asymptotic periodicity, and finite-point blow-up in one-dimensional semilinear heat equations, J. Differential Equations, 78 (1989), 160-190.
doi: 10.1016/0022-0396(89)90081-8. |
[2] |
A. Friedman and B. McLeod,
Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J., 34 (1985), 425-447.
doi: 10.1512/iumj.1985.34.34025. |
[3] |
Y. Fujishima,
Location of the blow-up set for a superlinear heat equation with small diffusion, Differential Integral Equations, 25 (2012), 759-786.
|
[4] |
Y. Fujishima,
Blow-up set for a superlinear heat equation and pointedness of the initial data, Discrete Continuous Dynamical Systems A, 34 (2014), 4617-4645.
doi: 10.3934/dcds.2014.34.4617. |
[5] |
Y. Fujishima and K. Ishige,
Blow-up set for a semilinear heat equation with small diffusion, J. Differential Equations, 249 (2010), 1056-1077.
doi: 10.1016/j.jde.2010.03.028. |
[6] |
Y. Fujishima and K. Ishige,
Blow-up set for a semilinear heat equation and pointedness of the initial data, Indiana Univ. Math. J., 61 (2012), 627-663.
doi: 10.1512/iumj.2012.61.4596. |
[7] |
Y. Giga and R. V. Kohn,
Nondegeneracy of blowup for semilinear heat equations, Comm. Pure Appl. Math., 42 (1989), 845-884.
doi: 10.1002/cpa.3160420607. |
[8] |
K. Ishige and H. Yagisita,
Blow-up problems for a semilinear heat equation with large diffusion, J. Differential Equations, 212 (2005), 114-128.
doi: 10.1016/j.jde.2004.10.021. |
[9] |
N. Mizoguchi and E. Yanagida,
Life span of solutions for a semilinear parabolic problem with small diffusion, J. Math. Anal. Appl., 261 (2001), 350-368.
doi: 10.1006/jmaa.2001.7530. |
[10] |
N. Mizoguchi and E. Yanagida,
Life span of solutions with large initial data in a semilinear parabolic equation, Indiana Univ. Math. J., 50 (2001), 591-610.
doi: 10.1512/iumj.2001.50.1905. |
[11] |
P. Quittner and P. Souplet,
Superlinear Parabolic Problems, Blow-up, Global Existence and Steady States, Birkhäuser Advanced Texts: Basler Lehrbücher Birkhäuser Verlag, Basel, 2007. |
[12] |
J. J. L. Velázquez,
Higher-dimensional blow-up for semilinear parabolic equations, Comm. Partial Differential Equations, 17 (1992), 1567-1596.
doi: 10.1080/03605309208820896. |
[13] |
J. J. L. Velázquez,
Estimates on the $(n-1)$-dimensional Hausdorff measure of the blow-up set for a semilinear heat equation, Indiana Univ. Math. J., 42 (1993), 445-476.
doi: 10.1512/iumj.1993.42.42021. |
[14] |
F. B. Weissler,
Single point blow-up for a semilinear initial value problem, J. Differential Equations, 55 (1984), 204-224.
doi: 10.1016/0022-0396(84)90081-0. |
[15] |
H. Yagisita,
Blow-up profile of a solution for a nonlinear heat equation with small diffusion, J. Math. Soc. Japan, 56 (2004), 993-1005.
doi: 10.2969/jmsj/1190905445. |
[16] |
H. Yagisita,
Variable instability of a constant blow-up solution in a nonlinear heat equation, J. Math. Soc. Japan, 56 (2004), 1007-1017.
doi: 10.2969/jmsj/1190905446. |
[17] |
H. Zaag,
On the regularity of the blow-up set for semilinear heat equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 19 (2002), 505-542.
doi: 10.1016/S0294-1449(01)00088-9. |
[18] |
H. Zaag,
One-dimensional behavior of singular $N$-dimensional solutions of semilinear heat equations, Comm. Math. Phys., 225 (2002), 523-549.
doi: 10.1007/s002200100589. |
[19] |
H. Zaag, Regularity of the blow-up set and singular behavior for semilinear heat equations, Mathematics & mathematics education (Bethlehem, 2000), 337-347, World Sci. Publ., River Edge, NJ, 2002. |
[20] |
H. Zaag,
Determination of the curvature of the blow-up set and refined singular behavior for a semilinear heat equation, Duke Math. J., 133 (2006), 499-525.
doi: 10.1215/S0012-7094-06-13333-1. |
show all references
References:
[1] |
X. Y. Chen and H. Matano,
Convergence, asymptotic periodicity, and finite-point blow-up in one-dimensional semilinear heat equations, J. Differential Equations, 78 (1989), 160-190.
doi: 10.1016/0022-0396(89)90081-8. |
[2] |
A. Friedman and B. McLeod,
Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J., 34 (1985), 425-447.
doi: 10.1512/iumj.1985.34.34025. |
[3] |
Y. Fujishima,
Location of the blow-up set for a superlinear heat equation with small diffusion, Differential Integral Equations, 25 (2012), 759-786.
|
[4] |
Y. Fujishima,
Blow-up set for a superlinear heat equation and pointedness of the initial data, Discrete Continuous Dynamical Systems A, 34 (2014), 4617-4645.
doi: 10.3934/dcds.2014.34.4617. |
[5] |
Y. Fujishima and K. Ishige,
Blow-up set for a semilinear heat equation with small diffusion, J. Differential Equations, 249 (2010), 1056-1077.
doi: 10.1016/j.jde.2010.03.028. |
[6] |
Y. Fujishima and K. Ishige,
Blow-up set for a semilinear heat equation and pointedness of the initial data, Indiana Univ. Math. J., 61 (2012), 627-663.
doi: 10.1512/iumj.2012.61.4596. |
[7] |
Y. Giga and R. V. Kohn,
Nondegeneracy of blowup for semilinear heat equations, Comm. Pure Appl. Math., 42 (1989), 845-884.
doi: 10.1002/cpa.3160420607. |
[8] |
K. Ishige and H. Yagisita,
Blow-up problems for a semilinear heat equation with large diffusion, J. Differential Equations, 212 (2005), 114-128.
doi: 10.1016/j.jde.2004.10.021. |
[9] |
N. Mizoguchi and E. Yanagida,
Life span of solutions for a semilinear parabolic problem with small diffusion, J. Math. Anal. Appl., 261 (2001), 350-368.
doi: 10.1006/jmaa.2001.7530. |
[10] |
N. Mizoguchi and E. Yanagida,
Life span of solutions with large initial data in a semilinear parabolic equation, Indiana Univ. Math. J., 50 (2001), 591-610.
doi: 10.1512/iumj.2001.50.1905. |
[11] |
P. Quittner and P. Souplet,
Superlinear Parabolic Problems, Blow-up, Global Existence and Steady States, Birkhäuser Advanced Texts: Basler Lehrbücher Birkhäuser Verlag, Basel, 2007. |
[12] |
J. J. L. Velázquez,
Higher-dimensional blow-up for semilinear parabolic equations, Comm. Partial Differential Equations, 17 (1992), 1567-1596.
doi: 10.1080/03605309208820896. |
[13] |
J. J. L. Velázquez,
Estimates on the $(n-1)$-dimensional Hausdorff measure of the blow-up set for a semilinear heat equation, Indiana Univ. Math. J., 42 (1993), 445-476.
doi: 10.1512/iumj.1993.42.42021. |
[14] |
F. B. Weissler,
Single point blow-up for a semilinear initial value problem, J. Differential Equations, 55 (1984), 204-224.
doi: 10.1016/0022-0396(84)90081-0. |
[15] |
H. Yagisita,
Blow-up profile of a solution for a nonlinear heat equation with small diffusion, J. Math. Soc. Japan, 56 (2004), 993-1005.
doi: 10.2969/jmsj/1190905445. |
[16] |
H. Yagisita,
Variable instability of a constant blow-up solution in a nonlinear heat equation, J. Math. Soc. Japan, 56 (2004), 1007-1017.
doi: 10.2969/jmsj/1190905446. |
[17] |
H. Zaag,
On the regularity of the blow-up set for semilinear heat equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 19 (2002), 505-542.
doi: 10.1016/S0294-1449(01)00088-9. |
[18] |
H. Zaag,
One-dimensional behavior of singular $N$-dimensional solutions of semilinear heat equations, Comm. Math. Phys., 225 (2002), 523-549.
doi: 10.1007/s002200100589. |
[19] |
H. Zaag, Regularity of the blow-up set and singular behavior for semilinear heat equations, Mathematics & mathematics education (Bethlehem, 2000), 337-347, World Sci. Publ., River Edge, NJ, 2002. |
[20] |
H. Zaag,
Determination of the curvature of the blow-up set and refined singular behavior for a semilinear heat equation, Duke Math. J., 133 (2006), 499-525.
doi: 10.1215/S0012-7094-06-13333-1. |
[1] |
Yohei Fujishima. Blow-up set for a superlinear heat equation and pointedness of the initial data. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4617-4645. doi: 10.3934/dcds.2014.34.4617 |
[2] |
Alexander Gladkov. Blow-up problem for semilinear heat equation with nonlinear nonlocal Neumann boundary condition. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2053-2068. doi: 10.3934/cpaa.2017101 |
[3] |
Van Tien Nguyen. On the blow-up results for a class of strongly perturbed semilinear heat equations. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3585-3626. doi: 10.3934/dcds.2015.35.3585 |
[4] |
Kyouhei Wakasa. Blow-up of solutions to semilinear wave equations with non-zero initial data. Conference Publications, 2015, 2015 (special) : 1105-1114. doi: 10.3934/proc.2015.1105 |
[5] |
Zhijun Zhang, Ling Mi. Blow-up rates of large solutions for semilinear elliptic equations. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1733-1745. doi: 10.3934/cpaa.2011.10.1733 |
[6] |
Asma Azaiez. Refined regularity for the blow-up set at non characteristic points for the vector-valued semilinear wave equation. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2397-2408. doi: 10.3934/cpaa.2019108 |
[7] |
Xiumei Deng, Jun Zhou. Global existence and blow-up of solutions to a semilinear heat equation with singular potential and logarithmic nonlinearity. Communications on Pure and Applied Analysis, 2020, 19 (2) : 923-939. doi: 10.3934/cpaa.2020042 |
[8] |
Keng Deng, Zhihua Dong. Blow-up for the heat equation with a general memory boundary condition. Communications on Pure and Applied Analysis, 2012, 11 (5) : 2147-2156. doi: 10.3934/cpaa.2012.11.2147 |
[9] |
Pierpaolo Esposito, Maristella Petralla. Symmetries and blow-up phenomena for a Dirichlet problem with a large parameter. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1935-1957. doi: 10.3934/cpaa.2012.11.1935 |
[10] |
Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318 |
[11] |
Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388 |
[12] |
Marina Chugunova, Chiu-Yen Kao, Sarun Seepun. On the Benilov-Vynnycky blow-up problem. Discrete and Continuous Dynamical Systems - B, 2015, 20 (5) : 1443-1460. doi: 10.3934/dcdsb.2015.20.1443 |
[13] |
Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399 |
[14] |
José M. Arrieta, Raúl Ferreira, Arturo de Pablo, Julio D. Rossi. Stability of the blow-up time and the blow-up set under perturbations. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 43-61. doi: 10.3934/dcds.2010.26.43 |
[15] |
Alberto Bressan, Massimo Fonte. On the blow-up for a discrete Boltzmann equation in the plane. Discrete and Continuous Dynamical Systems, 2005, 13 (1) : 1-12. doi: 10.3934/dcds.2005.13.1 |
[16] |
Asato Mukai, Yukihiro Seki. Refined construction of type II blow-up solutions for semilinear heat equations with Joseph–Lundgren supercritical nonlinearity. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4847-4885. doi: 10.3934/dcds.2021060 |
[17] |
Hiroyuki Takamura, Hiroshi Uesaka, Kyouhei Wakasa. Sharp blow-up for semilinear wave equations with non-compactly supported data. Conference Publications, 2011, 2011 (Special) : 1351-1357. doi: 10.3934/proc.2011.2011.1351 |
[18] |
Mohamed-Ali Hamza, Hatem Zaag. Blow-up results for semilinear wave equations in the superconformal case. Discrete and Continuous Dynamical Systems - B, 2013, 18 (9) : 2315-2329. doi: 10.3934/dcdsb.2013.18.2315 |
[19] |
Qiong Chen, Chunlai Mu, Zhaoyin Xiang. Blow-up and asymptotic behavior of solutions to a semilinear integrodifferential system. Communications on Pure and Applied Analysis, 2006, 5 (3) : 435-446. doi: 10.3934/cpaa.2006.5.435 |
[20] |
Li Ma. Blow-up for semilinear parabolic equations with critical Sobolev exponent. Communications on Pure and Applied Analysis, 2013, 12 (2) : 1103-1110. doi: 10.3934/cpaa.2013.12.1103 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]