We study a stochastic parabolic evolution equation of the form $ dX+AXdt = F(t)dt+G(t)dW(t)$ in Banach spaces. Existence of mild and strict solutions and their space-time regularity are shown in both the deterministic and stochastic cases. Abstract results are applied to a nonlinear stochastic heat equation.
Citation: |
J. M. Ball
, Strongly continuous semigroups, weak solutions, and the variation of constants formula, Proc. Amer. Math. Soc., 63 (1977)
, 370-373.
![]() ![]() |
|
Z. Brzeźniak
and E. Hausenblas
, Maximal regularity for stochastic convolutions driven by Levy processes, Probab. Theory Related Fields, 145 (2009)
, 615-637.
![]() ![]() |
|
G. Da Prato
and P. Grisvard
, Maximal regularity for evolution equations by interpolation and extrapolation, J. Funct. Anal., 58 (1984)
, 107-124.
![]() ![]() |
|
G. Da Prato
, S. Kwapien
and J. Zabczyk
, Regularity of solutions of linear stochastic equations in Hilbert spaces, Stochastic, 23 (1987)
, 1-23.
![]() ![]() |
|
G. Da Prato and J. Zabczyk,
Stochastic Equations in Infinite Dimensions, Second edition, Cambridge University Press, Cambridge, 2014.
![]() ![]() |
|
G. Da Prato
and A. Lunardi
, Maximal regularity for stochastic convolutions in $ L_p$ spaces, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 9 (1998)
, 25-29.
![]() ![]() |
|
A. Favini and A. Yagi,
Degenerate Differential Equations in Banach Spaces, Marcel-Dekker, 1999.
![]() ![]() |
|
M. Hairer, An introduction to stochastic PDEs,
arXiv e-prints (2009), arXiv: 0907.4178.
![]() ![]() |
|
N. V. Krylov
, An analytic approach to SPDEs, in stochastic partial differential equations: Six perspectives, Math. Surveys Monogr. Amer. Math. Soc., 64 (1999)
, 185-242.
![]() ![]() |
|
N. V. Krylov
and S. V. Lototsky
, A Sobolev space theory of SPDEs with constant coefficients in a half space, SIAM J. Math. Anal., 31 (1999)
, 19-33.
![]() ![]() |
|
A. Lunardi,
Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, 1995.
![]() ![]() |
|
R. Mikulevicius
, On the Cauchy problem for parabolic SPDEs in Hölder classes, Ann. Probab., 28 (2000)
, 74-103.
![]() ![]() |
|
C. Mueller
and D. Nualart
, Regularity of the density for the stochastic heat equation, Electron. J. Probab., 13 (2008)
, 2248-2258.
![]() ![]() |
|
E. Pardoux
and T. Zhang
, Absolute continuity of the law of the solution of a parabolic SPDE, J. Functional Anal., 13 (2008)
, 2248-2258.
![]() ![]() |
|
A. Pazy,
Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, 1983.
![]() ![]() |
|
B. L. Rozovskii,
Stochastic Evolution Systems. Linear Theory and Applications to Nonlinear Filtering, Kluwer Academic Publishers Group, Dordrecht, 1990.
![]() ![]() |
|
E. Sinestrari
, On the abstract Cauchy problem of parabolic type in spaces of continuous functions, J. Math. Anal. Appl., 107 (1985)
, 16-66.
![]() ![]() |
|
T. Shiga
, Two contrasting properties of solutions for one-dimensional stochastic partial differential equations, Can. J. Math., 46 (1994)
, 415-437.
![]() ![]() |
|
H. Tanabe
, Remarks on the equations of evolution in a Banach space, Osaka J. Math., 12 (1960)
, 145-166.
![]() ![]() |
|
H. Tanabe
, Note on singular pertubation for abstract differential equations, Osaka J. Math., 1 (1964)
, 239-252.
![]() ![]() |
|
H. Tanabe,
Equation of Evolution, Iwanami (in Japanese), 1975. English translation, Pitman, 1979.
![]() ![]() |
|
H. Tanabe,
Functional Analytical Methods for Partial Differential Equations, Marcel-Dekker, 1997.
![]() ![]() |
|
T. V. Tạ
, Regularity of solutions of abstract linear evolution equations, Lith. Math. J., 56 (2016)
, 268-290.
![]() ![]() |
|
T. V. Tạ
, Non-autonomous stochastic evolution equations in Banach spaces of martingale type 2: strict solutions and maximal regularity, Discrete Contin. Dyn. Syst. Ser. A, 37 (2017)
, 4507-4542.
![]() ![]() |
|
T. V. Tạ, Stochastic parabolic evolution equations in M-type 2 Banach spaces,
arXiv e-prints, (2015), arXiv: 1508.07340.
![]() |
|
T. V. Tạ, Y. Yamamoto and A. Yagi, Strict solutions to stochastic linear evolution equations in M-type 2 Banach spaces, Funkc. Ekvacioj. (in press) (arXiv: 1508.07431).
![]() |
|
J. M. A. M. van Neerven
, M. C. Veraar
and L. Weis
, Stochastic evolution equations in UMD Banach spaces, J. Funct. Anal., 255 (2008)
, 940-993.
![]() ![]() |
|
J. M. A. M. van Neerven
, M. C. Veraar
and L. Weis
, Stochastic maximal $ L_p$-regularity, Ann. Probab., 40 (2012)
, 788-812.
![]() ![]() |
|
J. M. A. M. van Neerven
, M. C. Veraar
and L. Weis
, Maximal $γ$-regularity, J. Evol. Equ., 15 (2015)
, 361-402.
![]() ![]() |
|
M. C. Veraar
, Non-autonomous stochastic evolution equations and applications to stochastic partial differential equations, J. Evol. Equ., 10 (2010)
, 85-127.
![]() ![]() |
|
J. B. Walsh,
An Introduction to Stochastic Partial Differential Equations,
École d'été de probabilités de Saint-Flour, XIV-1984,265-439, Lecture Notes in Mathematics 1180, Springer, Berlin, 1986.
![]() ![]() |
|
A. Yagi
, Fractional powers of operators and evolution equations of parabolic type, Proc. Japan Acad. Ser. A Math. Sci., 64 (1988)
, 227-230.
![]() ![]() |
|
A. Yagi
, Parabolic evolution equations in which the coefficients are the generators of infinitely differentiable semigroups, Funkcial. Ekvac., 32 (1989)
, 107-124.
![]() ![]() |
|
A. Yagi
, Parabolic evolution equations in which the coefficients are the generators of infinitely differentiable semigroups, Ⅱ, Funkcial. Ekvac., 33 (1990)
, 139-150.
![]() ![]() |
|
A. Yagi,
Abstract Parabolic Evolution Equations and their Applications, Springer, Berlin, 2010.
![]() ![]() |