We consider the fourth order problem $Δ^{2}u = λ f(u)$ on a general bounded domain $Ω$ in $R^{n}$ with the Navier boundary condition $u = Δ u = 0$ on $\partial Ω$. Here, $λ$ is a positive parameter and $ f:[0, a_{f}) \to \Bbb{R}_{+} $ $ \left( {0 < {a_f} \le \infty } \right)$ is a smooth, increasing, convex nonlinearity such that $ f(0) > 0 $ and which blows up at $ {a_f} $. Let
$0<τ_{-}: = \liminf\limits_{t \to a_{f}} \frac{f(t)f''(t)}{f'(t)^{2}}≤q τ_{+}: = \limsup\limits_{t \to a_{f}} \frac{f(t)f''(t)}{f'(t)^{2}}<2.$
We show that if $u_{m}$ is a sequence of semistable solutions correspond to $λ_{m}$ satisfy the stability inequality
$\sqrt{λ_{m}}\int{{_{Ω}}}\sqrt{f'(u_{m})}\phi ^{2}dx≤\int{{_{Ω}}}|\nablaφ|^{2}dx, ~~\text{for all}~\phi ∈ H^{1}_{0}(Ω), $
then $\sup_{m} ||u_{m}||_{L^{∞}(Ω)}<a_{f}$ for $n< \frac{4α_{*}(2-τ_{+})+2τ_{+}}{τ_{+}}\max \{1, τ_{+}\}, $ where $α^{*}$ is the largest root of the equation
$(2-τ_{-})^{2} α^{4}- 8(2-τ_{+})α^{2}+4(4-3τ_{+})α-4(1-τ_{+}) = 0.$
In particular, if $τ_{-} = τ_{+}: = τ$, then $\sup_{m} ||u_{m}||_{L^{∞}(Ω)}<a_{f}$ for $n≤12$ when $τ≤ 1$, and for $n≤7$ when $τ≤ 1.57863$. These estimates lead to the regularity of the corresponding extremal solution $u^{*}(x) = \lim_{λ\uparrowλ^{*}}u_{λ}(x), $ where $λ^*$ is the extremal parameter of the eigenvalue problem.
Citation: |
A. Aghajani
, New a priori estimates for semistable solutions of semilinear elliptic equations, Potential Anal., 44 (2016)
, 729-744.
![]() ![]() |
|
A. Aghajani
, Regularity of extremal solutions of semilinear elliptic problems with non-convex nonlinearities on general domains, Discrete Contin. Dyn. Syst., 37 (2017)
, 3521-3530.
![]() ![]() |
|
S. Agmon
, A. Douglis
and L. Nirenberg
, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I, Comm. Pure Appl. Math., 12 (1959)
, 623-727.
![]() ![]() |
|
E. Berchio and F. Gazoola, Some remarks on bihormonic elliptic problems with positive, increasing and convex nonlinearities,
Electronic J. differential Equations, 34 (2005), 20 pp.
![]() ![]() |
|
H. Brezis
and L. Vazquez
, Blow-up solutions of some nonlinear elliptic problems, Mat. Univ. Complut. Madrid, 10 (1997)
, 443-469.
![]() ![]() |
|
X. Cabŕe
, k-Regularity of minimizers of semilinear elliptic problems up to dimension 4, Comm. Pure Appl. Math., 63 (2010)
, 1362-1380.
![]() ![]() |
|
D. Cassani
, J. do O
and N. Ghoussoub
, On a fourth order elliptic problem with a singular nonlinearity, Adv. Nonlinear Stud., 9 (2009)
, 177-197.
![]() ![]() |
|
C. Cowan
, Regularity of the extremal solutions in a Gelfand system problem, Adv. Nonlinear Stud., 11 (2011)
, 695-700.
![]() ![]() |
|
C. Cowan, P. Esposito, N. Ghoussoub and A. Moradifam, The critical dimension for a fourth order elliptic problem with singular nonlinearity,
Arch. Ration. Mech. Anal., in press, (2009), 19 pp
![]() ![]() |
|
C. Cowan
, P. Esposito
and N. Ghoussoub
, Regularity of extremal solutions in fourth order nonlinear eigenvalue problems on general domains, DCDS-A, 28 (2010)
, 1033-1050.
![]() ![]() |
|
C. Cowan
and N. Ghoussoub
, Regularity of semi-stable solutions to fourth order nonlinear eigenvalue problems on general domains, Cal. Var., 49 (2014)
, 291-305.
![]() ![]() |
|
X. Cabŕe
, M. Sanchón
and J. Spruck
, A priori estimates for semistable solutions of semilinear elliptic equations, Discrete Contin. Dyn. Syst., 39 (2007)
, 565-592.
![]() ![]() |
|
J. Dávila
, L. Dupaigne
, I. Guerra
and M. Montenegro
, Stable solutions for the bilaplacian with exponential nonlinearity, SIAM J. Math. Anal., 39 (2007)
, 565-592.
![]() ![]() |
|
J. Dávila, I. Flores and I. Guerra, Multiplicity of solutions for a fourth order equation with power-type nonlinearity,
Math. Ann., 348 (2010), 143--193
![]() ![]() |
|
L. Dupaigne
, M. Ghergu
and G. Warnault
, The Gelfand Problem for the Biharmonic Operator, Arch. Ration. Mech. Anal., 208 (2013)
, 725-752.
![]() ![]() |
|
L. Dupaigne
, A. Farina
and B. Sirakov
, Regularity of the extremal solution for the Liouville system, Geometric Partial Differential Equations, 208 (2013)
, 139-144.
![]() ![]() |
|
P. Esposito
, N. Ghoussoub
and Y. Guo
, Compactness along the branch of semi-stable and unstable solutions for an elliptic problem with a singular nonlinearity, Comm. Pure Appl. Math., 60 (2007)
, 1731-1768.
![]() ![]() |
|
A. Ferrero
, H.-C. Grunau
and P. Karageorgis
, Supercritical biharmonic equations with power-type nonlinearity, Ann. Mat. Pura Appl., 188 (2009)
, 171-185.
![]() ![]() |
|
N. Ghoussoub
and Y. Guo
, On the partial differential equations of electro MEMS devices: stationary case, SIAM J. Math. Anal., 38 (2007)
, 1423-1449.
![]() ![]() |
|
Z. Guo
and J. Wei
, Liouville type results and regularity of the extremal solutions of biharmonic equation with negative exponents, Discrete Contin. Dyn. Syst., 34 (2014)
, 2561-2580.
![]() ![]() |
|
F. Gazzola, H. -C. Grunau and G. Sweers, Polyharmonic Boundary Value Problems: Positivity Preserving and Nonlinear Higher Order Elliptic Equations in Bounded Domains, Lecture Notes in Mathematics, (1991), Springer, Berlin, 2010.
![]() ![]() |
|
Z. Guo
and J. Wei
, On a fourth order nonlinear elliptic equation with negative exponent, SIAM J. Math. Anal., 40 (2008/09)
, 2034-2054.
![]() ![]() |
|
H. Hajlaoui
, A. Harrabi
and D. Ye
, On stable solutions of the biharmonic problem with polynomial growth, Pacific Journal of Mathematics, 270 (2014)
, 79-93.
![]() ![]() |
|
A. Moradifam
, The singular extremal solutions of the bilaplacian with exponential nonlinearity, Proc. Amer. Math. Soc., 138 (2010)
, 1287-1293.
![]() ![]() |
|
Y. Martel
, Uniqueness of weak extremal solutions of nonlinear elliptic problems, Houston J. Math., 23 (1997)
, 161-168.
![]() ![]() |
|
F. Mignot
and J-P. Puel
, Sur une classe de problemes non lineaires avec non linearite positive, croissante, convexe, Comm. Partial Differential Equations, 5 (1980)
, 791-836.
![]() ![]() |
|
G. Nedev
, Regularity of the extremal solution of semilinear elliptic equations, C. R. Acad. Sci. Paris S'er. I Math., 330 (2000)
, 997-1002.
![]() ![]() |
|
J. Serrin
, Local behavior of solutions of quasi-linear equations, Acta Math., 111 (1964)
, 247-302.
![]() ![]() |
|
S. Villegas
, Boundedness of extremal solutions in dimension 4, Adv. Math., 235 (2013)
, 126-133.
![]() ![]() |
|
K. Wang
, Partial regularity of stable solutions to the supercritical equations and its applications, Nonlinear Anal., 75 (2012)
, 5238-5260.
![]() ![]() |
|
J. Wei
, X. Xu
and W. Yang
, On the classification of stable solutions to biharmonic problems in large dimensions, Pacific J. Math., 263 (2013)
, 495-512.
![]() ![]() |
|
D. Ye
and J. Wei
, Liouville Theorems for finite Morse index solutions of Biharmonic problem, Math. Ann., 356 (2013)
, 1599-1612.
![]() ![]() |
|
D. Ye
and F. Zhou
, Boundedness of the extremal solution for semilinear elliptic problems, Commun. Contemp. Math., 4 (2002)
, 547-558.
![]() ![]() |