Advanced Search
Article Contents
Article Contents

Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities

  • * Corresponding author: A. Aghajani

    * Corresponding author: A. Aghajani 
Abstract Full Text(HTML) Related Papers Cited by
  • We consider the fourth order problem $Δ^{2}u = λ f(u)$ on a general bounded domain $Ω$ in $R^{n}$ with the Navier boundary condition $u = Δ u = 0$ on $\partial Ω$. Here, $λ$ is a positive parameter and $ f:[0, a_{f}) \to \Bbb{R}_{+} $ $ \left( {0 < {a_f} \le \infty } \right)$ is a smooth, increasing, convex nonlinearity such that $ f(0) > 0 $ and which blows up at $ {a_f} $. Let

    $0<τ_{-}: = \liminf\limits_{t \to a_{f}} \frac{f(t)f''(t)}{f'(t)^{2}}≤q τ_{+}: = \limsup\limits_{t \to a_{f}} \frac{f(t)f''(t)}{f'(t)^{2}}<2.$

    We show that if $u_{m}$ is a sequence of semistable solutions correspond to $λ_{m}$ satisfy the stability inequality

    $\sqrt{λ_{m}}\int{{_{Ω}}}\sqrt{f'(u_{m})}\phi ^{2}dx≤\int{{_{Ω}}}|\nablaφ|^{2}dx, ~~\text{for all}~\phi ∈ H^{1}_{0}(Ω), $

    then $\sup_{m} ||u_{m}||_{L^{∞}(Ω)}<a_{f}$ for $n< \frac{4α_{*}(2-τ_{+})+2τ_{+}}{τ_{+}}\max \{1, τ_{+}\}, $ where $α^{*}$ is the largest root of the equation

    $(2-τ_{-})^{2} α^{4}- 8(2-τ_{+})α^{2}+4(4-3τ_{+})α-4(1-τ_{+}) = 0.$

    In particular, if $τ_{-} = τ_{+}: = τ$, then $\sup_{m} ||u_{m}||_{L^{∞}(Ω)}<a_{f}$ for $n≤12$ when $τ≤ 1$, and for $n≤7$ when $τ≤ 1.57863$. These estimates lead to the regularity of the corresponding extremal solution $u^{*}(x) = \lim_{λ\uparrowλ^{*}}u_{λ}(x), $ where $λ^*$ is the extremal parameter of the eigenvalue problem.

    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.


    \begin{equation} \\ \end{equation}
  • 加载中
  •   A. Aghajani , New a priori estimates for semistable solutions of semilinear elliptic equations, Potential Anal., 44 (2016) , 729-744. 
      A. Aghajani , Regularity of extremal solutions of semilinear elliptic problems with non-convex nonlinearities on general domains, Discrete Contin. Dyn. Syst., 37 (2017) , 3521-3530. 
      S. Agmon , A. Douglis  and  L. Nirenberg , Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I, Comm. Pure Appl. Math., 12 (1959) , 623-727. 
      E. Berchio and F. Gazoola, Some remarks on bihormonic elliptic problems with positive, increasing and convex nonlinearities, Electronic J. differential Equations, 34 (2005), 20 pp.
      H. Brezis  and  L. Vazquez , Blow-up solutions of some nonlinear elliptic problems, Mat. Univ. Complut. Madrid, 10 (1997) , 443-469. 
      X. Cabŕe , k-Regularity of minimizers of semilinear elliptic problems up to dimension 4, Comm. Pure Appl. Math., 63 (2010) , 1362-1380. 
      D. Cassani , J. do O  and  N. Ghoussoub , On a fourth order elliptic problem with a singular nonlinearity, Adv. Nonlinear Stud., 9 (2009) , 177-197. 
      C. Cowan , Regularity of the extremal solutions in a Gelfand system problem, Adv. Nonlinear Stud., 11 (2011) , 695-700. 
      C. Cowan, P. Esposito, N. Ghoussoub and A. Moradifam, The critical dimension for a fourth order elliptic problem with singular nonlinearity, Arch. Ration. Mech. Anal., in press, (2009), 19 pp
      C. Cowan , P. Esposito  and  N. Ghoussoub , Regularity of extremal solutions in fourth order nonlinear eigenvalue problems on general domains, DCDS-A, 28 (2010) , 1033-1050. 
      C. Cowan  and  N. Ghoussoub , Regularity of semi-stable solutions to fourth order nonlinear eigenvalue problems on general domains, Cal. Var., 49 (2014) , 291-305. 
      X. Cabŕe , M. Sanchón  and  J. Spruck , A priori estimates for semistable solutions of semilinear elliptic equations, Discrete Contin. Dyn. Syst., 39 (2007) , 565-592. 
      J. Dávila , L. Dupaigne , I. Guerra  and  M. Montenegro , Stable solutions for the bilaplacian with exponential nonlinearity, SIAM J. Math. Anal., 39 (2007) , 565-592. 
      J. Dávila, I. Flores and I. Guerra, Multiplicity of solutions for a fourth order equation with power-type nonlinearity, Math. Ann., 348 (2010), 143--193
      L. Dupaigne , M. Ghergu  and  G. Warnault , The Gelfand Problem for the Biharmonic Operator, Arch. Ration. Mech. Anal., 208 (2013) , 725-752. 
      L. Dupaigne , A. Farina  and  B. Sirakov , Regularity of the extremal solution for the Liouville system, Geometric Partial Differential Equations, 208 (2013) , 139-144. 
      P. Esposito , N. Ghoussoub  and  Y. Guo , Compactness along the branch of semi-stable and unstable solutions for an elliptic problem with a singular nonlinearity, Comm. Pure Appl. Math., 60 (2007) , 1731-1768. 
      A. Ferrero , H.-C. Grunau  and  P. Karageorgis , Supercritical biharmonic equations with power-type nonlinearity, Ann. Mat. Pura Appl., 188 (2009) , 171-185. 
      N. Ghoussoub  and  Y. Guo , On the partial differential equations of electro MEMS devices: stationary case, SIAM J. Math. Anal., 38 (2007) , 1423-1449. 
      Z. Guo  and  J. Wei , Liouville type results and regularity of the extremal solutions of biharmonic equation with negative exponents, Discrete Contin. Dyn. Syst., 34 (2014) , 2561-2580. 
      F. Gazzola, H. -C. Grunau and G. Sweers, Polyharmonic Boundary Value Problems: Positivity Preserving and Nonlinear Higher Order Elliptic Equations in Bounded Domains, Lecture Notes in Mathematics, (1991), Springer, Berlin, 2010.
      Z. Guo  and  J. Wei , On a fourth order nonlinear elliptic equation with negative exponent, SIAM J. Math. Anal., 40 (2008/09) , 2034-2054. 
      H. Hajlaoui , A. Harrabi  and  D. Ye , On stable solutions of the biharmonic problem with polynomial growth, Pacific Journal of Mathematics, 270 (2014) , 79-93. 
      A. Moradifam , The singular extremal solutions of the bilaplacian with exponential nonlinearity, Proc. Amer. Math. Soc., 138 (2010) , 1287-1293. 
      Y. Martel , Uniqueness of weak extremal solutions of nonlinear elliptic problems, Houston J. Math., 23 (1997) , 161-168. 
      F. Mignot  and  J-P. Puel , Sur une classe de problemes non lineaires avec non linearite positive, croissante, convexe, Comm. Partial Differential Equations, 5 (1980) , 791-836. 
      G. Nedev , Regularity of the extremal solution of semilinear elliptic equations, C. R. Acad. Sci. Paris S'er. I Math., 330 (2000) , 997-1002. 
      J. Serrin , Local behavior of solutions of quasi-linear equations, Acta Math., 111 (1964) , 247-302. 
      S. Villegas , Boundedness of extremal solutions in dimension 4, Adv. Math., 235 (2013) , 126-133. 
      K. Wang , Partial regularity of stable solutions to the supercritical equations and its applications, Nonlinear Anal., 75 (2012) , 5238-5260. 
      J. Wei , X. Xu  and  W. Yang , On the classification of stable solutions to biharmonic problems in large dimensions, Pacific J. Math., 263 (2013) , 495-512. 
      D. Ye  and  J. Wei , Liouville Theorems for finite Morse index solutions of Biharmonic problem, Math. Ann., 356 (2013) , 1599-1612. 
      D. Ye  and  F. Zhou , Boundedness of the extremal solution for semilinear elliptic problems, Commun. Contemp. Math., 4 (2002) , 547-558. 
  • 加载中

Article Metrics

HTML views(543) PDF downloads(250) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint