We consider the following fractional Hénonsystem
$\left\{ \begin{array}{*{35}{l}} {}&{{(-\vartriangle )}^{\alpha /2}}u = |x{{|}^{a}}{{v}^{p}},~~&x\in {{R}^{n}}, \\ {}&{{(-\vartriangle )}^{\alpha /2}}v = |x{{|}^{b}}{{u}^{q}},~~&x\in {{R}^{n}}, \\ {}&u\ge 0,v\ge 0,&{} \\\end{array} \right.$
for $0<α<2$ and $a, b$ $≥0$, $n≥2$. Under rather weaker assumptions, by using a direct method of moving planes, we prove the nonexistence and symmetry of positive solutions in the subcritical case where $1<p<\frac{n+α+a}{n-α}$ and $1<q<\frac{n+α+b}{n-α}$.
Citation: |
A. Arthur
, X. Yan
and M. Zhao
, A Liouville-type theorem for higher order elliptic systems, Disc. Cont. Dyn. Syst., 34 (2014)
, 3317-3339.
![]() ![]() |
|
J. Busca
and R. Man$\acute{a}$sevich
, A Liouville-type theorem for Lane-Emden system, Indiana Univ. Math. J., 51 (2002)
, 37-51.
![]() ![]() |
|
G. Caristi
, L. D'Ambrosio
and E. Mitidieri
, Representation formula for solutions to some classes of higher order systems and related Liouville theorems, Milan Journal of Mathematics, 76 (2008)
, 27-67.
![]() ![]() |
|
Ph. Clément
, D. G. de Figueiredo
and E. Mitidieri
, Positive solutions of semilinear elliptic systems, Commun. Partial Diff. Equ., 17 (1992)
, 923-940.
![]() ![]() |
|
W. Chen
, C. Li
and Y. Li
, A direct method of moving planes for the fractional Laplacian, Adv. in Math., 308 (2017)
, 404-437.
![]() ![]() |
|
W. Chen
and C. Li
, A priori estimates for prescribing scalar curvature equations, Ann. of Math., 145 (1997)
, 547-564.
![]() ![]() |
|
W. Chen
and C. Li
, Super polyharmonic property of solutions for PDE systems and its applications, Commun. Pure Appl. Anal., 12 (2013)
, 2497-2514.
![]() ![]() |
|
W. Chen
, C. Li
and B. Ou
, Qualitative properties of solutions for an integral equation, Disc. Cont. Dyn. Syst., 12 (2005)
, 347-354.
![]() ![]() |
|
W. Chen
, C. Li
and B. Ou
, Classification of solutions for a system of integral equations, Comm. Partial Diff. Eqs., 30 (2005)
, 59-65.
![]() ![]() |
|
W. Chen
and C. Li
, An integral system and the Lane-Emdem conjecture, Disc. Cont. Dyn. Syst., 4 (2009)
, 1167-1184.
![]() ![]() |
|
W. Chen
, L. D'Ambrosio
and Y. Li
, Some Liouville theorems for the fractional Laplacian, Nonlinear Anal., 121 (2015)
, 370-381.
![]() ![]() |
|
W. Chen
, Y. Fang
and R. Yang
, Liouville theorems involving the fractional Laplacian on a half space, Adv. in Math., 274 (2014)
, 167-198.
![]() ![]() |
|
L. D'Ambrosio
and E. Mitidieri
, Hardy-Littlewood-Sobolev systems and related Liouville theorems, Disc. Cont. Dyn. Syst., 7 (2014)
, 653-671.
![]() ![]() |
|
J. Dou
and H. Zhou
, Liouville theorem for fractional Hénon equation and system on Rn, Commun. Pure Appl. Anal., 14 (2015)
, 493-515.
![]() ![]() |
|
M. Fazly
, Liouville theorems for the polyharmonic Hénon-Lane-Emden system, Methods and Appl. Anal., 21 (2014)
, 265-282.
![]() ![]() |
|
D. Figueiredo
and P. Felmer
, A Liouville-type theorem for elliptic systems, Ann. Sc. Norm. Super Pisa. Cl. Sci., 21 (1994)
, 387-397.
![]() ![]() |
|
M. Fazly
and N. Ghoussoub
, On the Hénon-Lane-Emden conjecture, Disc. Cont. Dyn. Syst., 34 (2014)
, 2513-2533.
![]() ![]() |
|
Y. Guo
and J. Liu
, Liouville type theorems for positive solutions of elliptic system in Rn, Comm. Partial Diff. Equ., 33 (2008)
, 263-284.
![]() ![]() |
|
B. Gidas
, W. Ni
and L. Nirenberg
, Symmetry and related properties via the maximum principle, Commun. Math. Phys., 68 (1979)
, 209-243.
![]() ![]() |
|
B. Gidas
and B. Spruck
, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Diff. Equ., 6 (1981)
, 883-901.
![]() ![]() |
|
H. He
, Infinitely many solutions for Hardy-Hénon type elliptic system in hyperbolic space, Ann. Acad. Sci. Fenn. Math., 40 (2015)
, 969-983.
![]() ![]() |
|
F. B. Hang
, On the integral systems related to Hardy-Littlewood-Sobolev inequality, Math. Res. Lett., 14 (2007)
, 373-383.
![]() ![]() |
|
M. Hénon
, Numerical experiments on the stability of spherical stellar systems, Symposium-International Astronomical Union, 62 (1974)
, 259-259.
![]() |
|
T. Jin
, Symmetry and nonexistence of positive solutions of elliptic equations and systems with Hardy term, Ann. inst. Henri Poincaré, 28 (2011)
, 965-981.
![]() ![]() |
|
C. Lin
, A classification of solutions of a conformally invariant fourth order equation in Rn, Comment. Math. Helv., 73 (1998)
, 206-231.
![]() ![]() |
|
Y. Lei
, Asymptotic properties of positive solutions of the Hardy-Sobolev type equations, J. Differential Equations, 254 (2013)
, 1774-1799.
![]() ![]() |
|
D. Li
, P. Niu
and R. Zhuo
, Symmetry and nonexistence of positive solutions of integral systems with Hardy terms, J. Math. Anal. Appl., 424 (2015)
, 915-931.
![]() ![]() |
|
D. Li
, P. Niu
and R. Zhuo
, Nonexistence of positive solutions for an integral equation related to the Hardy-Sobolev inequality, Acta. Appl. Math., 134 (2014)
, 185-200.
![]() ![]() |
|
F. Liu
and J. Yang
, Non-existence of Hardy-Hénon type elliptic system, Acta math. Sci. ser. B engl. Ed., 27 (2007)
, 673-688.
![]() ![]() |
|
E. Mitidieri
, Nonexistence of positive solutions of semilinear elliptic systems in Rn, Diff. Inte. Equ., 9 (1996)
, 465-479.
![]() ![]() |
|
E. Mitidieri
, A Rellich type identity and applications, Comm. Partial Differential Equations, 18 (1993)
, 125-151.
![]() ![]() |
|
P. Pol$\acute{a}\check{c}$ik
, P. Quittner
and P. Souplet
, Singularity and decay estimates in superlinear problems via Liouville-type theorems, Ⅰ: Elliptic systems, Duke Math. J., 139 (2007)
, 555-579.
![]() ![]() |
|
Q. H. Phan
and Ph. Souplet
, Liouville-type theorems and bounds of solutions of Hardy-Hénon equations, J. Differential Equations, 252 (2012)
, 2544-2562.
![]() ![]() |
|
Ph. Souplet
, The proof of the Lane-Emden conjecture in four space dimensions, Adv. in Math., 221 (2009)
, 1409-1427.
![]() ![]() |
|
J. Serrin
and H. Zou
, Non-existence of positive solutions of Lane-Emden systems, Diff. Inte. Equ., 9 (1996)
, 635-653.
![]() ![]() |
|
J. Serrin
and H. Zou
, Existence of positive solutions of the Lane-Emden system, Atti Semin. Mat. Fis. Univ. Modena, 46 (1998)
, 369-380.
![]() ![]() |
|
D. Tang
and Y. Fang
, Regularity and nonexistence of solutions for a system involving the fractional Laplacian, Commun. Pure Appl. Anal., 14 (2015)
, 2431-2451.
![]() ![]() |
|
R. Zhuo
, W. Chen
, X. Cui
and Z. Yuan
, Symmetry and nonexistence of solutions for a nonlinear system involving the fractional Laplacian, Disc. Cont. Dyn. Syst., 36 (2016)
, 1125-1141.
![]() |