    May  2018, 17(3): 1103-1120. doi: 10.3934/cpaa.2018053

## A nonlocal concave-convex problem with nonlocal mixed boundary data

 1 Laboratoire d'Analyse Nonlinéaire et Mathématiques Appliquées, Université Abou Bakr Belkaïd, Tlemcen, Tlemcen 13000, Algeria 2 Département de Mathématiques, Université Ibn Khaldoun, Tiaret, Tiaret 14000, Algeria 3 University of Melbourne, School of Mathematics and Statistics, Peter Hall Building, Parkville, Melbourne VIC 3010, Australia 4 School of Mathematics and Statistics, 35 Stirling Highway, Crawley, Perth WA 6009, Australia 5 Dipartimento di Matematica, Università degli studi di Milano, Via Saldini 50,20133 Milan, Italy 6 Istituto di Matematica Applicata e Tecnologie Informatiche, Consiglio Nazionale delle Ricerche, Via Ferrata 1,27100 Pavia, Italy

* Corresponding author

Received  November 2016 Revised  October 2017 Published  January 2018

Fund Project: The first author is supported by research grants MTM2013-40846-P and MTM2016-80474-P, MINECO, Spain.

The aim of this paper is to study the following problem
 $(P_{\lambda}) \equiv\left\{\begin{array}{rcll}(-\Delta)^s u& = &\lambda u^{q}+u^{p}&{\text{ in }}\Omega,\\ u&>&0 &{\text{ in }} \Omega, \\ \mathcal{B}_{s}u& = &0 &{\text{ in }} \mathbb{R}^{N}\backslash \Omega,\end{array}\right.$
with
 $0 , $N>2s$, $λ> 0$, $Ω \subset \mathbb{R}^{N}$is a smooth bounded domain, $(-Δ)^su(x) = a_{N,s}\;P.V.∈t_{\mathbb{R}^{N}}\frac{u(x)-u(y)}{|x-y|^{N+2s}}\,dy,$$a_{N,s}$is a normalizing constant, and $\mathcal{B}_{s}u = uχ_{Σ_{1}}+\mathcal{N}_{s}uχ_{Σ_{2}}.$Here, $Σ_{1}$and $Σ_{2}$are open sets in $\mathbb{R}^{N}\backslash Ω$such that $Σ_{1} \cap Σ_{2} = \emptyset$and $\overline{Σ}_{1}\cup \overline{Σ}_{2} = \mathbb{R}^{N}\backslash Ω.$In this setting, $\mathcal{N}_{s}u$can be seen as a Neumann condition of nonlocal type that is compatible with the probabilistic interpretation of the fractional Laplacian, as introduced in , and $\mathcal{B}_{s}u$is a mixed Dirichlet-Neumann exterior datum. The main purpose of this work is to prove existence, nonexistence and multiplicity of positive energy solutions to problem ( $P_{λ}$) for suitable ranges of $λ$and $p$and to understand the interaction between the concave-convex nonlinearity and the Dirichlet-Neumann data. Citation: Boumediene Abdellaoui, Abdelrazek Dieb, Enrico Valdinoci. A nonlocal concave-convex problem with nonlocal mixed boundary data. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1103-1120. doi: 10.3934/cpaa.2018053 ##### References:   S. Alama, Semilinear elliptic equation with sublinear indefinite nonlinearities, Adv. Differential Equation, 4 (1999), 813-842. Google Scholar  A. Ambrosetti, Critical points and nonlinear variational problems, Mem. Soc. Math. France (N.S.), 49 (1992), 1-139. Google Scholar  A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543. Google Scholar  A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381. Google Scholar  D. Applebaum, Lévy Processes and Stochastic Calculus, 2nd, edition, Cambridge Studies in Advanced Mathematics, vol. 116, Cambridge University Press, 2009. Google Scholar  J. G. Azorero and I. Peral, Multiplicity of solutions for elliptic problems with critical exponent or with a non-symmetric term, Trans. Am. Math. Soc, 323 (1991), 877-895. Google Scholar  B. Barrios, E. Colorado, R. Servadei and F. Soria, A critical fractional equation with concave-convex power nonlinearities, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 875-900. Google Scholar  B. Barrios and M. Medina, Strong maximum principles for fractional elliptic and parabolic problems with mixed boundary conditions, arXiv: 1607.01505. Google Scholar  B. Barrios, M. Medina and I. Peral, Some remarks on the solvability of non-local elliptic problems with the Hardy potential, Commun. Contemp. Math, 16 (2014), 1350046, 29 pp. Google Scholar  H. Brezis and S. Kamin, Sublinear elliptic equations in$\mathbb{R}^{N}$, Manuscripta Math., 74 (1992), 87-106. Google Scholar  C. Bucur and M. Medina, A fractional elliptic problem in$\mathbb{R}^{N}$with critical growth and convex nonlinearities, arXiv: 1609.01911. Google Scholar  C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications, Lecture Notes of the Unione Matematica Italiana, 20. Springer; Unione Matematica Italiana, Bologna, 2016. Google Scholar  L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260. Google Scholar  L. Caffarelli and L. Silvestre, Regularity results for nonlocal equations by approximation, Arch. Ration. Mech. Anal., 200 (2011), 59-88. Google Scholar  E. Colorado and I. Peral, Semilinear elliptic problems with mixed Dirichlet-Neumann boundary conditions, J. Funct. Anal, 199 (2003), 468-507. Google Scholar  M. Cozzi, Qualitative Properties of Solutions of Nonlinear Anisotropic PDEs in Local and Nonlocal Settings, PhD thesis, 2015. Google Scholar  E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573. Google Scholar  S. Dipierro, M. Medina, I. Peral and E. Valdinoci, Bifurcation results for a fractional elliptic equation with critica exponent in$\mathbb{R}^N$, Manuscripta Math., 153 (2017), no.1-230. Google Scholar  S. Dipierro, M. Medina and E. Valdinoci, Fractional elliptic problems with critical growth in the whole of$\mathbb{R}^{N}$, Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)]. Edizioni della Normale, Pisa, 2017. Google Scholar  S. Dipierro, X. Ros-Oton and E. Valdinoci, Nonlocal problems with Neumann boundary conditions, Rev. Mat. Iberoam, 33 (2017), 377-416. Google Scholar  N. Ghoussoub and D. Preiss, A general mountain pass principle for locating and classifying critical points, Ann. Inst. H. Poincaré Anal. Nonlinéaire, 6 (1989), 321-330. Google Scholar  M. Grossi and F. Pacella, Positive solutions of nonlinear elliptic equations with critical Sobolev exponent and mixed boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A., 116 (1990), 23-43. Google Scholar  N. S. Landkof, Foundations of Modern Potential Theory, Translated from the Russian by A. P. Doohovskoy, Die Grundlehren der mathematischen Wissenschaften, Band 180, Springer-Verlag. Google Scholar  T. Leonori, I. Peral, A. Primo and F. Soria, Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations, Discrete Contin. Dyn. Syst., 35 (2015), 6031-6068. Google Scholar  A. C. Ponce, Elliptic PDEs, Measures and Capacities, Tracts in Mathematics 23, European Mathematical Society (EMS), Zurich, 2016. Google Scholar  X. Ros-Oton, Nonlocal elliptic equations in bounded domains: A survey, Publ. Mat., 60 (2016), 3-26. Google Scholar  X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: regularity up to the boundary, J. Math. Pures Appl., 101 (2014), 275-302. Google Scholar  R. Servadei and E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl, 389 (2012), 887-898. Google Scholar  R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137. Google Scholar  R. Servadei and E. Valdinoci, Weak and viscosity solutions of the fractional Laplace equation, Publ. Mat., 58 (2014), 133-154. Google Scholar  G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble), 15 (1965), 189-258. Google Scholar  M. Struwe, Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Ergeb. Math. Grenzgeb. (3), Springer-Verlag, Berlin Heidelberg, 1990. Google Scholar show all references ##### References:   S. Alama, Semilinear elliptic equation with sublinear indefinite nonlinearities, Adv. Differential Equation, 4 (1999), 813-842. Google Scholar  A. Ambrosetti, Critical points and nonlinear variational problems, Mem. Soc. Math. France (N.S.), 49 (1992), 1-139. Google Scholar  A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543. Google Scholar  A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381. Google Scholar  D. Applebaum, Lévy Processes and Stochastic Calculus, 2nd, edition, Cambridge Studies in Advanced Mathematics, vol. 116, Cambridge University Press, 2009. Google Scholar  J. G. Azorero and I. Peral, Multiplicity of solutions for elliptic problems with critical exponent or with a non-symmetric term, Trans. Am. Math. Soc, 323 (1991), 877-895. Google Scholar  B. Barrios, E. Colorado, R. Servadei and F. Soria, A critical fractional equation with concave-convex power nonlinearities, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 875-900. Google Scholar  B. Barrios and M. Medina, Strong maximum principles for fractional elliptic and parabolic problems with mixed boundary conditions, arXiv: 1607.01505. Google Scholar  B. Barrios, M. Medina and I. Peral, Some remarks on the solvability of non-local elliptic problems with the Hardy potential, Commun. Contemp. Math, 16 (2014), 1350046, 29 pp. Google Scholar  H. Brezis and S. Kamin, Sublinear elliptic equations in$\mathbb{R}^{N}$, Manuscripta Math., 74 (1992), 87-106. Google Scholar  C. Bucur and M. Medina, A fractional elliptic problem in$\mathbb{R}^{N}$with critical growth and convex nonlinearities, arXiv: 1609.01911. Google Scholar  C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications, Lecture Notes of the Unione Matematica Italiana, 20. Springer; Unione Matematica Italiana, Bologna, 2016. Google Scholar  L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260. Google Scholar  L. Caffarelli and L. Silvestre, Regularity results for nonlocal equations by approximation, Arch. Ration. Mech. Anal., 200 (2011), 59-88. Google Scholar  E. Colorado and I. Peral, Semilinear elliptic problems with mixed Dirichlet-Neumann boundary conditions, J. Funct. Anal, 199 (2003), 468-507. Google Scholar  M. Cozzi, Qualitative Properties of Solutions of Nonlinear Anisotropic PDEs in Local and Nonlocal Settings, PhD thesis, 2015. Google Scholar  E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573. Google Scholar  S. Dipierro, M. Medina, I. Peral and E. Valdinoci, Bifurcation results for a fractional elliptic equation with critica exponent in$\mathbb{R}^N$, Manuscripta Math., 153 (2017), no.1-230. Google Scholar  S. Dipierro, M. Medina and E. Valdinoci, Fractional elliptic problems with critical growth in the whole of$\mathbb{R}^{N}$, Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)]. Edizioni della Normale, Pisa, 2017. Google Scholar  S. Dipierro, X. Ros-Oton and E. Valdinoci, Nonlocal problems with Neumann boundary conditions, Rev. Mat. Iberoam, 33 (2017), 377-416. Google Scholar  N. Ghoussoub and D. Preiss, A general mountain pass principle for locating and classifying critical points, Ann. Inst. H. Poincaré Anal. Nonlinéaire, 6 (1989), 321-330. Google Scholar  M. Grossi and F. Pacella, Positive solutions of nonlinear elliptic equations with critical Sobolev exponent and mixed boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A., 116 (1990), 23-43. Google Scholar  N. S. Landkof, Foundations of Modern Potential Theory, Translated from the Russian by A. P. Doohovskoy, Die Grundlehren der mathematischen Wissenschaften, Band 180, Springer-Verlag. Google Scholar  T. Leonori, I. Peral, A. Primo and F. Soria, Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations, Discrete Contin. Dyn. Syst., 35 (2015), 6031-6068. Google Scholar  A. C. Ponce, Elliptic PDEs, Measures and Capacities, Tracts in Mathematics 23, European Mathematical Society (EMS), Zurich, 2016. Google Scholar  X. Ros-Oton, Nonlocal elliptic equations in bounded domains: A survey, Publ. Mat., 60 (2016), 3-26. Google Scholar  X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: regularity up to the boundary, J. Math. Pures Appl., 101 (2014), 275-302. Google Scholar  R. Servadei and E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl, 389 (2012), 887-898. Google Scholar  R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137. Google Scholar  R. Servadei and E. Valdinoci, Weak and viscosity solutions of the fractional Laplace equation, Publ. Mat., 58 (2014), 133-154. Google Scholar  G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble), 15 (1965), 189-258. Google Scholar  M. Struwe, Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Ergeb. Math. Grenzgeb. (3), Springer-Verlag, Berlin Heidelberg, 1990. Google Scholar   Patricio Felmer, Ying Wang. Qualitative properties of positive solutions for mixed integro-differential equations. Discrete & Continuous Dynamical Systems, 2019, 39 (1) : 369-393. doi: 10.3934/dcds.2019015  Christina A. Hollon, Jeffrey T. Neugebauer. Positive solutions of a fractional boundary value problem with a fractional derivative boundary condition. Conference Publications, 2015, 2015 (special) : 615-620. doi: 10.3934/proc.2015.0615  Zuodong Yang, Jing Mo, Subei Li. Positive solutions of$p$-Laplacian equations with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 623-636. doi: 10.3934/dcdsb.2011.16.623  Tsung-Fang Wu. Multiplicity of positive solutions for a semilinear elliptic equation in$R_+^N$with nonlinear boundary condition. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1675-1696. doi: 10.3934/cpaa.2010.9.1675  Michael E. Filippakis, Nikolaos S. Papageorgiou. Existence and multiplicity of positive solutions for nonlinear boundary value problems driven by the scalar$p\$-Laplacian. Communications on Pure & Applied Analysis, 2004, 3 (4) : 729-756. doi: 10.3934/cpaa.2004.3.729  Norihisa Ikoma. Multiplicity of radial and nonradial solutions to equations with fractional operators. Communications on Pure & Applied Analysis, 2020, 19 (7) : 3501-3530. doi: 10.3934/cpaa.2020153  Sertan Alkan. A new solution method for nonlinear fractional integro-differential equations. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1065-1077. doi: 10.3934/dcdss.2015.8.1065  Leonelo Iturriaga, Eugenio Massa. Existence, nonexistence and multiplicity of positive solutions for the poly-Laplacian and nonlinearities with zeros. Discrete & Continuous Dynamical Systems, 2018, 38 (8) : 3831-3850. doi: 10.3934/dcds.2018166  Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825  Alain Hertzog, Antoine Mondoloni. Existence of a weak solution for a quasilinear wave equation with boundary condition. Communications on Pure & Applied Analysis, 2002, 1 (2) : 191-219. doi: 10.3934/cpaa.2002.1.191  Xudong Shang, Jihui Zhang. Multiplicity and concentration of positive solutions for fractional nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2239-2259. doi: 10.3934/cpaa.2018107  Ankit Kumar, Kamal Jeet, Ramesh Kumar Vats. Controllability of Hilfer fractional integro-differential equations of Sobolev-type with a nonlocal condition in a Banach space. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021016  Seda İğret Araz. New class of volterra integro-differential equations with fractal-fractional operators: Existence, uniqueness and numerical scheme. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2297-2309. doi: 10.3934/dcdss.2021053  Daria Bugajewska, Mirosława Zima. On positive solutions of nonlinear fractional differential equations. Conference Publications, 2003, 2003 (Special) : 141-146. doi: 10.3934/proc.2003.2003.141  Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2021, 26 (10) : 5217-5226. doi: 10.3934/dcdsb.2020340  M.J. Lopez-Herrero. The existence of weak solutions for a general class of mixed boundary value problems. Conference Publications, 2011, 2011 (Special) : 1015-1024. doi: 10.3934/proc.2011.2011.1015  John R. Graef, Lingju Kong, Qingkai Kong, Min Wang. Positive solutions of nonlocal fractional boundary value problems. Conference Publications, 2013, 2013 (special) : 283-290. doi: 10.3934/proc.2013.2013.283  Rongrong Yang, Zhongxue Lü. The properties of positive solutions to semilinear equations involving the fractional Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1073-1089. doi: 10.3934/cpaa.2019052  Dengfeng Lü, Shuangjie Peng. On the positive vector solutions for nonlinear fractional Laplacian systems with linear coupling. Discrete & Continuous Dynamical Systems, 2017, 37 (6) : 3327-3352. doi: 10.3934/dcds.2017141  Lishan Lin. A priori bounds and existence result of positive solutions for fractional Laplacian systems. Discrete & Continuous Dynamical Systems, 2019, 39 (3) : 1517-1531. doi: 10.3934/dcds.2019065

2019 Impact Factor: 1.105

## Metrics

• PDF downloads (166)
• HTML views (338)
• Cited by (1)

## Other articlesby authors

• on AIMS
• on Google Scholar

[Back to Top]