May  2018, 17(3): 1121-1145. doi: 10.3934/cpaa.2018054

Ground state solutions for asymptotically periodic quasilinear Schrödinger equations with critical growth

1. 

School of Mathematics and Statistics, Southwest University, Chongqing, 400700, China

2. 

School of Mathematics and Statistics, Xin-Yang Normal University, Xinyang, 464000, China

* Corresponding author: Chunlei Tang

Received  January 2017 Revised  November 2017 Published  January 2018

Fund Project: The research is supported by National Natural Science Foundation of China(No. 11471267,11601438) and Chongqing Research Program of Basic Research and Frontier Technology(No.cstc2017jcyjAX0331).

In this paper, we are concerned with the existence of ground state solutions for the following quasilinear Schrödinger equation:
$-Δ u+V(x)u-Δ (u^2)u = K(x)|u|^{22^*-2}u+g(x,u), \ \ x∈ \mathbb{R}^N\ \ \ \ \ \ \ \ \ \ \left( 1 \right)$
where $N≥ 3$, $V, \ g$ are asymptotically periodic functions in $x$. By combining variational methods and the concentration-compactness principle, we obtain a ground state solution for equation (1) under a new reformative condition which unify the asymptotic processes of $V, g $ at infinity.
Citation: Yanfang Xue, Chunlei Tang. Ground state solutions for asymptotically periodic quasilinear Schrödinger equations with critical growth. Communications on Pure and Applied Analysis, 2018, 17 (3) : 1121-1145. doi: 10.3934/cpaa.2018054
References:
[1]

S. Adachi and T. Watanabe, Uniqueness of the ground state solutions of quasilinear Schrödinger equations, Nonlinear Anal., 75 (2012), 819-833. 

[2]

H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477. 

[3]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: a dual approach, Nonlinear Anal., 56 (2004), 213-226. 

[4]

M. ColinL. Jeanjean and M. Squassina, Stability and instability results for standing waves of quasi-linear Schrödinger equations, Nonlinearity, 23 (2010), 1353-1385. 

[5]

Y. B. DengS. J. Peng and J. Wang, Nodal soliton solutions for quasilinear Schrödinger equations with critical exponent, Journal of Mathematical Physics, 54 (2013), 011504. 

[6]

Y. B. DengS. J. Peng and S. S. Yan, Critical exponents and solitary wave solutions for generalized quasilinear Schrödinger equations, Journal of Differential Equations, 260 (2016), 1228-1262. 

[7]

J. M. do Ó and U. Severo, Quasilinear Schrödinger equations involving concave and convex nonlinearities, Commun. Pure Appl. Anal., 8 (2009), 621-644. 

[8]

J.M. do ÓO. H. Miyagaki and S. H. M. Soares, Soliton solutions for quasilinear Schrödinger equations with critical growth, Journal of Differential Equations, 248 (2010), 722-744. 

[9]

X. D. Fang and A. Szulkin, Multiple solutions for a quasilinear Schrödinger equation, J. Differential Equations, 254 (2013), 2015-2032. 

[10]

F. Gladiali and M. Squassina, Uniqueness of ground states for a class of quasi-linear elliptic equations, Adv. Nonlinear Anal., 1 (2012), 159-179. 

[11]

Y. He and G. B. Li, Concentrating soliton solutions for quasilinear Schrödinger equations involving critical Soblev exponents, Disctete and Continuous Dynamical Systems, 36 (2016), 731-762. 

[12]

L. JeanjeanT. J. Luo and Z. Q. Wang, Multiple normalized solutions for quasi-linear Schrödinger equations, J. Differential Equations, 259 (2015), 3894-3928. 

[13]

G. B. Li and A. Szulkin, An asymptotically periodic Schrödinger equation with indefinite linear part, Commun. Contemp. Math., 4 (2002), 763-776. 

[14]

H. F. Lins and E. A. B. Silva, Quasilinear asymptotically periodic elliptic equations with critical growth, Nonlinear Anal., 71 (2009), 2890-2905. 

[15]

P. L. Lions, The concentration-compactness principle in the calculus of variations, The locally compact case. Ⅱ, Ann. Inst. H. Poincare Anal. Non Lineaire, 1 (1984), 223-283. 

[16]

P. L. Lions, The concentration-compactness principle in the calculus of variations, The locally compact case. Ⅰ, Ann. Inst. H. Poincare Anal. Non Lineaire, 1 (1984), 109-145. 

[17]

J. LiuJ. F. Liao and C. L. Tang, A positive ground state solution for a class of asymptotically periodic Schrödinger equations, Comput. Math. Appl., 71 (2016), 965-976. 

[18]

J. LiuJ. F. Liao and C. L. Tang, A positive ground state solution for a class of asymptotically periodic Schrödinger equations with critical exponent, Comput. Math. Appl., 72 (2016), 1851-1864. 

[19]

J. Q. LiuX. Q. Liu and Z. Q. Wang, Multiple sign-changing solutions for quasilinear elliptic equations via perturbation method, Comm. Partial Differential Equations, 39 (2014), 2216-2239. 

[20]

J. Q. LiuY. Q. Wang and Z. Q. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method, Comm. Partial Differential Equations, 29 (2004), 879-901. 

[21]

J. Q. LiuY. Q. Wang and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations Ⅱ, J. Differential Equations, 187 (2003), 473-493. 

[22]

J. Q. Liu and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations, Ⅰ, Proc. Amer. Math. Soc., 131 (2003), 441-448. 

[23]

X. Q. LiuJ. Q. Liu and Z. Q. Wang, Quasilinear elliptic equations via perturbation method, Proc. Amer. Math. Soc., 141 (2013), 253-263. 

[24]

X. Q. LiuJ. Q. Liu and Z. Q. Wang, Quasilinear elliptic equations with critical growth via perturbation method, Journal of Differential Equations, 254 (2013), 102-124. 

[25]

X. Q. LiuJ. Q. Liu and Z. Q. Wang, Ground states for quasilinear Schrödinger equations with critical growth, Calculus of Variations and Partial Differential Equations, 46 (2013), 641-669. 

[26]

R. D. Marchi, Schrödinger equations with asymptotically periodic terms, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 145 (2015), 745-757. 

[27]

A. Moameni, Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in $\mathbb{R}^N$, Journal of Differential Equations, 229 (2006), 570-587. 

[28]

M. PoppenbergK. Schmitt and Z. Q. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations, Calc. Var. Partial Differential Equations, 14 (2002), 329-344. 

[29]

D. Ruiz and G. Siciliano, Existence of ground states for a modified nonlinear Schrödinger equation, Nonlinearity, 23 (2010), 1221-1233. 

[30]

A. Selvitella, Uniqueness and nondegeneracy of the ground state for a quasilinear Schrödinger equation with a small parameter, Nonlinear Anal., 74 (2011), 1731-1737. 

[31]

H. X. Shi and H. B. Chen, Generalized quasilinear asymptotically periodic Schrödinger equations with critical growth, Comput. Math. Appl., 71 (2016), 849-858. 

[32]

E. A. B. Silva and G. F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with subcritical growth, Nonlinear Anal., 72 (2010), 2935-2949. 

[33]

E. A. B. Silva and G. F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with critical growth, Calc. Var. Partial Differential Equations, 39 (2010), 1-33. 

[34]

X. H. Tang, Non-Nehari manifold method for asymptotically periodic Schrödinger equations, Sci. China Math., 58 (2015), 715-728. 

[35] M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996. 
[36]

X. Wu, Multiple solutions for quasilinear Schrödinger equations with a parameter, J. Differential Equations, 256 (2014), 2619-2632. 

[37]

H. ZhangJ. X. Xu and F. B. Zhang, On a class of semilinear Schrödinger equations with indefinite linear part, J. Math. Anal. Appl., 414 (2014), 710-724. 

[38]

H. ZhangJ. X. Xu and F. B. Zhang, Ground state solutions for asymptotically periodic Schrödinger equations with indefinite linear part, Math. Methods Appl. Sci., 38 (2015), 113-122. 

show all references

References:
[1]

S. Adachi and T. Watanabe, Uniqueness of the ground state solutions of quasilinear Schrödinger equations, Nonlinear Anal., 75 (2012), 819-833. 

[2]

H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477. 

[3]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: a dual approach, Nonlinear Anal., 56 (2004), 213-226. 

[4]

M. ColinL. Jeanjean and M. Squassina, Stability and instability results for standing waves of quasi-linear Schrödinger equations, Nonlinearity, 23 (2010), 1353-1385. 

[5]

Y. B. DengS. J. Peng and J. Wang, Nodal soliton solutions for quasilinear Schrödinger equations with critical exponent, Journal of Mathematical Physics, 54 (2013), 011504. 

[6]

Y. B. DengS. J. Peng and S. S. Yan, Critical exponents and solitary wave solutions for generalized quasilinear Schrödinger equations, Journal of Differential Equations, 260 (2016), 1228-1262. 

[7]

J. M. do Ó and U. Severo, Quasilinear Schrödinger equations involving concave and convex nonlinearities, Commun. Pure Appl. Anal., 8 (2009), 621-644. 

[8]

J.M. do ÓO. H. Miyagaki and S. H. M. Soares, Soliton solutions for quasilinear Schrödinger equations with critical growth, Journal of Differential Equations, 248 (2010), 722-744. 

[9]

X. D. Fang and A. Szulkin, Multiple solutions for a quasilinear Schrödinger equation, J. Differential Equations, 254 (2013), 2015-2032. 

[10]

F. Gladiali and M. Squassina, Uniqueness of ground states for a class of quasi-linear elliptic equations, Adv. Nonlinear Anal., 1 (2012), 159-179. 

[11]

Y. He and G. B. Li, Concentrating soliton solutions for quasilinear Schrödinger equations involving critical Soblev exponents, Disctete and Continuous Dynamical Systems, 36 (2016), 731-762. 

[12]

L. JeanjeanT. J. Luo and Z. Q. Wang, Multiple normalized solutions for quasi-linear Schrödinger equations, J. Differential Equations, 259 (2015), 3894-3928. 

[13]

G. B. Li and A. Szulkin, An asymptotically periodic Schrödinger equation with indefinite linear part, Commun. Contemp. Math., 4 (2002), 763-776. 

[14]

H. F. Lins and E. A. B. Silva, Quasilinear asymptotically periodic elliptic equations with critical growth, Nonlinear Anal., 71 (2009), 2890-2905. 

[15]

P. L. Lions, The concentration-compactness principle in the calculus of variations, The locally compact case. Ⅱ, Ann. Inst. H. Poincare Anal. Non Lineaire, 1 (1984), 223-283. 

[16]

P. L. Lions, The concentration-compactness principle in the calculus of variations, The locally compact case. Ⅰ, Ann. Inst. H. Poincare Anal. Non Lineaire, 1 (1984), 109-145. 

[17]

J. LiuJ. F. Liao and C. L. Tang, A positive ground state solution for a class of asymptotically periodic Schrödinger equations, Comput. Math. Appl., 71 (2016), 965-976. 

[18]

J. LiuJ. F. Liao and C. L. Tang, A positive ground state solution for a class of asymptotically periodic Schrödinger equations with critical exponent, Comput. Math. Appl., 72 (2016), 1851-1864. 

[19]

J. Q. LiuX. Q. Liu and Z. Q. Wang, Multiple sign-changing solutions for quasilinear elliptic equations via perturbation method, Comm. Partial Differential Equations, 39 (2014), 2216-2239. 

[20]

J. Q. LiuY. Q. Wang and Z. Q. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method, Comm. Partial Differential Equations, 29 (2004), 879-901. 

[21]

J. Q. LiuY. Q. Wang and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations Ⅱ, J. Differential Equations, 187 (2003), 473-493. 

[22]

J. Q. Liu and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations, Ⅰ, Proc. Amer. Math. Soc., 131 (2003), 441-448. 

[23]

X. Q. LiuJ. Q. Liu and Z. Q. Wang, Quasilinear elliptic equations via perturbation method, Proc. Amer. Math. Soc., 141 (2013), 253-263. 

[24]

X. Q. LiuJ. Q. Liu and Z. Q. Wang, Quasilinear elliptic equations with critical growth via perturbation method, Journal of Differential Equations, 254 (2013), 102-124. 

[25]

X. Q. LiuJ. Q. Liu and Z. Q. Wang, Ground states for quasilinear Schrödinger equations with critical growth, Calculus of Variations and Partial Differential Equations, 46 (2013), 641-669. 

[26]

R. D. Marchi, Schrödinger equations with asymptotically periodic terms, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 145 (2015), 745-757. 

[27]

A. Moameni, Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in $\mathbb{R}^N$, Journal of Differential Equations, 229 (2006), 570-587. 

[28]

M. PoppenbergK. Schmitt and Z. Q. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations, Calc. Var. Partial Differential Equations, 14 (2002), 329-344. 

[29]

D. Ruiz and G. Siciliano, Existence of ground states for a modified nonlinear Schrödinger equation, Nonlinearity, 23 (2010), 1221-1233. 

[30]

A. Selvitella, Uniqueness and nondegeneracy of the ground state for a quasilinear Schrödinger equation with a small parameter, Nonlinear Anal., 74 (2011), 1731-1737. 

[31]

H. X. Shi and H. B. Chen, Generalized quasilinear asymptotically periodic Schrödinger equations with critical growth, Comput. Math. Appl., 71 (2016), 849-858. 

[32]

E. A. B. Silva and G. F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with subcritical growth, Nonlinear Anal., 72 (2010), 2935-2949. 

[33]

E. A. B. Silva and G. F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with critical growth, Calc. Var. Partial Differential Equations, 39 (2010), 1-33. 

[34]

X. H. Tang, Non-Nehari manifold method for asymptotically periodic Schrödinger equations, Sci. China Math., 58 (2015), 715-728. 

[35] M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996. 
[36]

X. Wu, Multiple solutions for quasilinear Schrödinger equations with a parameter, J. Differential Equations, 256 (2014), 2619-2632. 

[37]

H. ZhangJ. X. Xu and F. B. Zhang, On a class of semilinear Schrödinger equations with indefinite linear part, J. Math. Anal. Appl., 414 (2014), 710-724. 

[38]

H. ZhangJ. X. Xu and F. B. Zhang, Ground state solutions for asymptotically periodic Schrödinger equations with indefinite linear part, Math. Methods Appl. Sci., 38 (2015), 113-122. 

[1]

Guangze Gu, Xianhua Tang, Youpei Zhang. Ground states for asymptotically periodic fractional Kirchhoff equation with critical Sobolev exponent. Communications on Pure and Applied Analysis, 2019, 18 (6) : 3181-3200. doi: 10.3934/cpaa.2019143

[2]

Kaimin Teng, Xiumei He. Ground state solutions for fractional Schrödinger equations with critical Sobolev exponent. Communications on Pure and Applied Analysis, 2016, 15 (3) : 991-1008. doi: 10.3934/cpaa.2016.15.991

[3]

Yong-Yong Li, Yan-Fang Xue, Chun-Lei Tang. Ground state solutions for asymptotically periodic modified Schr$ \ddot{\mbox{o}} $dinger-Poisson system involving critical exponent. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2299-2324. doi: 10.3934/cpaa.2019104

[4]

Yinbin Deng, Wentao Huang. Positive ground state solutions for a quasilinear elliptic equation with critical exponent. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4213-4230. doi: 10.3934/dcds.2017179

[5]

Edcarlos D. Silva, Jefferson S. Silva. Ground state solutions for asymptotically periodic nonlinearities for Kirchhoff problems. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022082

[6]

Xiaoming He, Marco Squassina, Wenming Zou. The Nehari manifold for fractional systems involving critical nonlinearities. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1285-1308. doi: 10.3934/cpaa.2016.15.1285

[7]

Maoding Zhen, Jinchun He, Haoyuan Xu, Meihua Yang. Positive ground state solutions for fractional Laplacian system with one critical exponent and one subcritical exponent. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6523-6539. doi: 10.3934/dcds.2019283

[8]

Yu Su. Ground state solution of critical Schrödinger equation with singular potential. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3347-3371. doi: 10.3934/cpaa.2021108

[9]

Qingfang Wang. The Nehari manifold for a fractional Laplacian equation involving critical nonlinearities. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2261-2281. doi: 10.3934/cpaa.2018108

[10]

Yu Su, Zhaosheng Feng. Ground state solutions for the fractional problems with dipole-type potential and critical exponent. Communications on Pure and Applied Analysis, 2022, 21 (6) : 1953-1968. doi: 10.3934/cpaa.2021111

[11]

Yu Su, Zhaosheng Feng. Ground state solutions and decay estimation of Choquard equation with critical exponent and Dipole potential. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022112

[12]

Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176

[13]

Yanfang Peng. On elliptic systems with Sobolev critical exponent. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3357-3373. doi: 10.3934/dcds.2016.36.3357

[14]

Gui-Dong Li, Chun-Lei Tang. Existence of ground state solutions for Choquard equation involving the general upper critical Hardy-Littlewood-Sobolev nonlinear term. Communications on Pure and Applied Analysis, 2019, 18 (1) : 285-300. doi: 10.3934/cpaa.2019015

[15]

Wenmin Gong, Guangcun Lu. On Dirac equation with a potential and critical Sobolev exponent. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2231-2263. doi: 10.3934/cpaa.2015.14.2231

[16]

Yi He, Lu Lu, Wei Shuai. Concentrating ground-state solutions for a class of Schödinger-Poisson equations in $\mathbb{R}^3$ involving critical Sobolev exponents. Communications on Pure and Applied Analysis, 2016, 15 (1) : 103-125. doi: 10.3934/cpaa.2016.15.103

[17]

Caisheng Chen, Qing Yuan. Existence of solution to $p-$Kirchhoff type problem in $\mathbb{R}^N$ via Nehari manifold. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2289-2303. doi: 10.3934/cpaa.2014.13.2289

[18]

Xianhua Tang, Sitong Chen. Ground state solutions of Nehari-Pohozaev type for Schrödinger-Poisson problems with general potentials. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4973-5002. doi: 10.3934/dcds.2017214

[19]

Sitong Chen, Junping Shi, Xianhua Tang. Ground state solutions of Nehari-Pohozaev type for the planar Schrödinger-Poisson system with general nonlinearity. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5867-5889. doi: 10.3934/dcds.2019257

[20]

A. Pankov. Gap solitons in periodic discrete nonlinear Schrödinger equations II: A generalized Nehari manifold approach. Discrete and Continuous Dynamical Systems, 2007, 19 (2) : 419-430. doi: 10.3934/dcds.2007.19.419

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (362)
  • HTML views (390)
  • Cited by (1)

Other articles
by authors

[Back to Top]