-
Previous Article
Asymptotics for the modified witham equation
- CPAA Home
- This Issue
-
Next Article
On the spectral stability of ground states of semi-linear Schrödinger and Klein-Gordon equations with fractional dispersion
Focusing nlkg equation with singular potential
1. | Department of Mathematics, University of Pisa, Largo B. Pontecorvo 5 Pisa, 56127 Italy |
2. | Faculty of Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan |
3. | Department of Mathematics, University of Bari, Via E. Orabona 4 I-70125 Bari, Italy |
$u_{tt}-Δ u+m^2 u=|x|^{-a}|u|^{p-1}u$ |
$0 < a < 2$ |
$d≥3$ |
$a$ |
References:
[1] |
V. Combet and F. Genoud,
Classification of minimal mass blow-up solutions for an L2 critical inhomogeneous NLS, J-Evol. Eq., 16 (2016), 483-500.
|
[2] |
Z. Gan and J. Zhang,
Standing waves of the inhomogeneous Klein-Gordon equations with critical exponent, Acta Math. Sin. (Engl. Ser.), 22 (2006), 357-366.
|
[3] |
Z. Gan and J. Zhang,
Cross-constrained variational problem and the non-linear Klein-Gordon equations, Glasg. Math. J., 50 (2008), 467-481.
|
[4] |
V. Georgiev and S. Lucente, Breaking Symmetry in focusing NLKG with potential, submitted |
[5] |
S. Ibrahim, N. Masmoudi and K. Nakanishi, Scattering threshold for the focusing nonlinear Klein-Gordon equation, Anal. PDE, 4 (2011), 405-460. Errata arXiv: 1506.06248. |
[6] |
S. Ibrahim, N. Masmoudi and K. Nakanishi,
Threshold solutions in the case of mass-shift for the critical Klein-Gordon equation, Transactions of the American Mathematical Society, 366 (2014), 5653-5669.
|
[7] |
C. E. Kenig and F. Merle,
Global well-posedness, scattering and blow-upup for the energycritical focusing non-linear wave equation, Acta Mathematica, 201 (2008), 147-212.
|
[8] |
E. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics 14, 2nd edition, AMS, 2001. |
[9] |
L. E. Payne and D. H. Sattinger,
Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22 (1975), 273-303.
|
[10] |
W. A. Strauss,
Existence of solitary waves in higher dimension, Comm. Math. Phys., 55 (1977), 149-162.
|
[11] |
J. Su, Z. Q. Wang and M. Willem,
Weighted Sobolev embedding with unbounded and decaying radial potentials, J. Differ. Equ., 238 (2007), 201-219.
|
[12] |
E. Yanagida,
Uniqueness of positive radial solutions of ∆u+g(r)u+h(r)up = 0 in ${{\mathbb{R}}^{n}}$, Arch. Rational Mech. Anal., 155 (1991), 257-274.
|
[13] |
J. Zhang,
Sharp conditions of global existence for nonlinear Schrödinger and Klein-Gordon equations, Nonlinear Anal. Ser. A: Theory Methods, 48 (2002), 191-207.
|
show all references
References:
[1] |
V. Combet and F. Genoud,
Classification of minimal mass blow-up solutions for an L2 critical inhomogeneous NLS, J-Evol. Eq., 16 (2016), 483-500.
|
[2] |
Z. Gan and J. Zhang,
Standing waves of the inhomogeneous Klein-Gordon equations with critical exponent, Acta Math. Sin. (Engl. Ser.), 22 (2006), 357-366.
|
[3] |
Z. Gan and J. Zhang,
Cross-constrained variational problem and the non-linear Klein-Gordon equations, Glasg. Math. J., 50 (2008), 467-481.
|
[4] |
V. Georgiev and S. Lucente, Breaking Symmetry in focusing NLKG with potential, submitted |
[5] |
S. Ibrahim, N. Masmoudi and K. Nakanishi, Scattering threshold for the focusing nonlinear Klein-Gordon equation, Anal. PDE, 4 (2011), 405-460. Errata arXiv: 1506.06248. |
[6] |
S. Ibrahim, N. Masmoudi and K. Nakanishi,
Threshold solutions in the case of mass-shift for the critical Klein-Gordon equation, Transactions of the American Mathematical Society, 366 (2014), 5653-5669.
|
[7] |
C. E. Kenig and F. Merle,
Global well-posedness, scattering and blow-upup for the energycritical focusing non-linear wave equation, Acta Mathematica, 201 (2008), 147-212.
|
[8] |
E. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics 14, 2nd edition, AMS, 2001. |
[9] |
L. E. Payne and D. H. Sattinger,
Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22 (1975), 273-303.
|
[10] |
W. A. Strauss,
Existence of solitary waves in higher dimension, Comm. Math. Phys., 55 (1977), 149-162.
|
[11] |
J. Su, Z. Q. Wang and M. Willem,
Weighted Sobolev embedding with unbounded and decaying radial potentials, J. Differ. Equ., 238 (2007), 201-219.
|
[12] |
E. Yanagida,
Uniqueness of positive radial solutions of ∆u+g(r)u+h(r)up = 0 in ${{\mathbb{R}}^{n}}$, Arch. Rational Mech. Anal., 155 (1991), 257-274.
|
[13] |
J. Zhang,
Sharp conditions of global existence for nonlinear Schrödinger and Klein-Gordon equations, Nonlinear Anal. Ser. A: Theory Methods, 48 (2002), 191-207.
|
[1] |
Guangyu Xu, Jun Zhou. Global existence and blow-up of solutions to a singular Non-Newton polytropic filtration equation with critical and supercritical initial energy. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1805-1820. doi: 10.3934/cpaa.2018086 |
[2] |
Joachim Krieger, Kenji Nakanishi, Wilhelm Schlag. Global dynamics of the nonradial energy-critical wave equation above the ground state energy. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2423-2450. doi: 10.3934/dcds.2013.33.2423 |
[3] |
Kenji Nakanishi, Tristan Roy. Global dynamics above the ground state for the energy-critical Schrödinger equation with radial data. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2023-2058. doi: 10.3934/cpaa.2016026 |
[4] |
Claudianor Oliveira Alves, M. A.S. Souto. On existence and concentration behavior of ground state solutions for a class of problems with critical growth. Communications on Pure and Applied Analysis, 2002, 1 (3) : 417-431. doi: 10.3934/cpaa.2002.1.417 |
[5] |
Long Wei, Zhijun Qiao, Yang Wang, Shouming Zhou. Conserved quantities, global existence and blow-up for a generalized CH equation. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1733-1748. doi: 10.3934/dcds.2017072 |
[6] |
Xiaoqiang Dai, Chao Yang, Shaobin Huang, Tao Yu, Yuanran Zhu. Finite time blow-up for a wave equation with dynamic boundary condition at critical and high energy levels in control systems. Electronic Research Archive, 2020, 28 (1) : 91-102. doi: 10.3934/era.2020006 |
[7] |
Gui-Dong Li, Chun-Lei Tang. Existence of ground state solutions for Choquard equation involving the general upper critical Hardy-Littlewood-Sobolev nonlinear term. Communications on Pure and Applied Analysis, 2019, 18 (1) : 285-300. doi: 10.3934/cpaa.2019015 |
[8] |
Jianhua Chen, Xianhua Tang, Bitao Cheng. Existence of ground state solutions for a class of quasilinear Schrödinger equations with general critical nonlinearity. Communications on Pure and Applied Analysis, 2019, 18 (1) : 493-517. doi: 10.3934/cpaa.2019025 |
[9] |
Yi-hang Hao, Xian-Gao Liu. The existence and blow-up criterion of liquid crystals system in critical Besov space. Communications on Pure and Applied Analysis, 2014, 13 (1) : 225-236. doi: 10.3934/cpaa.2014.13.225 |
[10] |
Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052 |
[11] |
Ronghua Jiang, Jun Zhou. Blow-up and global existence of solutions to a parabolic equation associated with the fraction p-Laplacian. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1205-1226. doi: 10.3934/cpaa.2019058 |
[12] |
Shiming Li, Yongsheng Li, Wei Yan. A global existence and blow-up threshold for Davey-Stewartson equations in $\mathbb{R}^3$. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1899-1912. doi: 10.3934/dcdss.2016077 |
[13] |
Shuyin Wu, Joachim Escher, Zhaoyang Yin. Global existence and blow-up phenomena for a weakly dissipative Degasperis-Procesi equation. Discrete and Continuous Dynamical Systems - B, 2009, 12 (3) : 633-645. doi: 10.3934/dcdsb.2009.12.633 |
[14] |
Mingyou Zhang, Qingsong Zhao, Yu Liu, Wenke Li. Finite time blow-up and global existence of solutions for semilinear parabolic equations with nonlinear dynamical boundary condition. Electronic Research Archive, 2020, 28 (1) : 369-381. doi: 10.3934/era.2020021 |
[15] |
Bin Li. On the blow-up criterion and global existence of a nonlinear PDE system in biological transport networks. Kinetic and Related Models, 2019, 12 (5) : 1131-1162. doi: 10.3934/krm.2019043 |
[16] |
Lili Du, Chunlai Mu, Zhaoyin Xiang. Global existence and blow-up to a reaction-diffusion system with nonlinear memory. Communications on Pure and Applied Analysis, 2005, 4 (4) : 721-733. doi: 10.3934/cpaa.2005.4.721 |
[17] |
Shu-Xiang Huang, Fu-Cai Li, Chun-Hong Xie. Global existence and blow-up of solutions to a nonlocal reaction-diffusion system. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1519-1532. doi: 10.3934/dcds.2003.9.1519 |
[18] |
Xiumei Deng, Jun Zhou. Global existence and blow-up of solutions to a semilinear heat equation with singular potential and logarithmic nonlinearity. Communications on Pure and Applied Analysis, 2020, 19 (2) : 923-939. doi: 10.3934/cpaa.2020042 |
[19] |
Jianbo Cui, Jialin Hong, Liying Sun. On global existence and blow-up for damped stochastic nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6837-6854. doi: 10.3934/dcdsb.2019169 |
[20] |
Monica Marras, Stella Vernier Piro. On global existence and bounds for blow-up time in nonlinear parabolic problems with time dependent coefficients. Conference Publications, 2013, 2013 (special) : 535-544. doi: 10.3934/proc.2013.2013.535 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]