July  2018, 17(4): 1387-1406. doi: 10.3934/cpaa.2018068

Focusing nlkg equation with singular potential

1. 

Department of Mathematics, University of Pisa, Largo B. Pontecorvo 5 Pisa, 56127 Italy

2. 

Faculty of Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan

3. 

Department of Mathematics, University of Bari, Via E. Orabona 4 I-70125 Bari, Italy

* Corresponding author: Sandra Lucente

Received  January 2017 Revised  June 2017 Published  April 2018

Fund Project: The first author was supported by University of Pisa, project no. PRA-2016-41"Fenomeni singolari in problemi deterministici e stocastici ed applicazioni"; by the Contract FIRB" Dinamiche Dispersive: Analisi di Fourier e Metodi Variazionali", 2012; by INDAM, GNAMPA -Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni; by Institute of Mathematics and Informatics, Bulgarian Academy of Sciences; by Top Global University Project, Waseda University. The second author was supported in part by Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM) Progetto 2017 Equazioni di tipo dispersivo e proprietà asintotiche.

We study the dynamics for the focusing nonlinear Klein Gordon equation with a positive, singular, radial potential and initial data in energy space. More precisely, we deal with
$u_{tt}-Δ u+m^2 u=|x|^{-a}|u|^{p-1}u$
with
$0 < a < 2$
. In dimension
$d≥3$
, we establish the existence and uniqueness of the ground state solution that enables us to define a threshold size for the initial data that separates global existence and blow-up. We find a critical exponent depending on
$a$
. We establish a global existence result for subcritical exponents and subcritical energy data. For subcritical exponents and critical energy some solutions blow-up, other solutions exist for all time due to the decomposition of the energy space of the initial data into two complementary sets.
Citation: Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068
References:
[1]

V. Combet and F. Genoud, Classification of minimal mass blow-up solutions for an L2 critical inhomogeneous NLS, J-Evol. Eq., 16 (2016), 483-500.   Google Scholar

[2]

Z. Gan and J. Zhang, Standing waves of the inhomogeneous Klein-Gordon equations with critical exponent, Acta Math. Sin. (Engl. Ser.), 22 (2006), 357-366.   Google Scholar

[3]

Z. Gan and J. Zhang, Cross-constrained variational problem and the non-linear Klein-Gordon equations, Glasg. Math. J., 50 (2008), 467-481.   Google Scholar

[4]

V. Georgiev and S. Lucente, Breaking Symmetry in focusing NLKG with potential, submitted Google Scholar

[5]

S. Ibrahim, N. Masmoudi and K. Nakanishi, Scattering threshold for the focusing nonlinear Klein-Gordon equation, Anal. PDE, 4 (2011), 405-460. Errata arXiv: 1506.06248. Google Scholar

[6]

S. IbrahimN. Masmoudi and K. Nakanishi, Threshold solutions in the case of mass-shift for the critical Klein-Gordon equation, Transactions of the American Mathematical Society, 366 (2014), 5653-5669.   Google Scholar

[7]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-upup for the energycritical focusing non-linear wave equation, Acta Mathematica, 201 (2008), 147-212.   Google Scholar

[8]

E. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics 14, 2nd edition, AMS, 2001. Google Scholar

[9]

L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22 (1975), 273-303.   Google Scholar

[10]

W. A. Strauss, Existence of solitary waves in higher dimension, Comm. Math. Phys., 55 (1977), 149-162.   Google Scholar

[11]

J. SuZ. Q. Wang and M. Willem, Weighted Sobolev embedding with unbounded and decaying radial potentials, J. Differ. Equ., 238 (2007), 201-219.   Google Scholar

[12]

E. Yanagida, Uniqueness of positive radial solutions of ∆u+g(r)u+h(r)up = 0 in ${{\mathbb{R}}^{n}}$, Arch. Rational Mech. Anal., 155 (1991), 257-274.   Google Scholar

[13]

J. Zhang, Sharp conditions of global existence for nonlinear Schrödinger and Klein-Gordon equations, Nonlinear Anal. Ser. A: Theory Methods, 48 (2002), 191-207.   Google Scholar

show all references

References:
[1]

V. Combet and F. Genoud, Classification of minimal mass blow-up solutions for an L2 critical inhomogeneous NLS, J-Evol. Eq., 16 (2016), 483-500.   Google Scholar

[2]

Z. Gan and J. Zhang, Standing waves of the inhomogeneous Klein-Gordon equations with critical exponent, Acta Math. Sin. (Engl. Ser.), 22 (2006), 357-366.   Google Scholar

[3]

Z. Gan and J. Zhang, Cross-constrained variational problem and the non-linear Klein-Gordon equations, Glasg. Math. J., 50 (2008), 467-481.   Google Scholar

[4]

V. Georgiev and S. Lucente, Breaking Symmetry in focusing NLKG with potential, submitted Google Scholar

[5]

S. Ibrahim, N. Masmoudi and K. Nakanishi, Scattering threshold for the focusing nonlinear Klein-Gordon equation, Anal. PDE, 4 (2011), 405-460. Errata arXiv: 1506.06248. Google Scholar

[6]

S. IbrahimN. Masmoudi and K. Nakanishi, Threshold solutions in the case of mass-shift for the critical Klein-Gordon equation, Transactions of the American Mathematical Society, 366 (2014), 5653-5669.   Google Scholar

[7]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-upup for the energycritical focusing non-linear wave equation, Acta Mathematica, 201 (2008), 147-212.   Google Scholar

[8]

E. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics 14, 2nd edition, AMS, 2001. Google Scholar

[9]

L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22 (1975), 273-303.   Google Scholar

[10]

W. A. Strauss, Existence of solitary waves in higher dimension, Comm. Math. Phys., 55 (1977), 149-162.   Google Scholar

[11]

J. SuZ. Q. Wang and M. Willem, Weighted Sobolev embedding with unbounded and decaying radial potentials, J. Differ. Equ., 238 (2007), 201-219.   Google Scholar

[12]

E. Yanagida, Uniqueness of positive radial solutions of ∆u+g(r)u+h(r)up = 0 in ${{\mathbb{R}}^{n}}$, Arch. Rational Mech. Anal., 155 (1991), 257-274.   Google Scholar

[13]

J. Zhang, Sharp conditions of global existence for nonlinear Schrödinger and Klein-Gordon equations, Nonlinear Anal. Ser. A: Theory Methods, 48 (2002), 191-207.   Google Scholar

[1]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[2]

Jinyi Sun, Zunwei Fu, Yue Yin, Minghua Yang. Global existence and Gevrey regularity to the Navier-Stokes-Nernst-Planck-Poisson system in critical Besov-Morrey spaces. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3409-3425. doi: 10.3934/dcdsb.2020237

[3]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[4]

Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194

[5]

Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021011

[6]

Bouthaina Abdelhedi, Hatem Zaag. Single point blow-up and final profile for a perturbed nonlinear heat equation with a gradient and a non-local term. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021032

[7]

Asato Mukai, Yukihiro Seki. Refined construction of type II blow-up solutions for semilinear heat equations with Joseph–Lundgren supercritical nonlinearity. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021060

[8]

Claudianor O. Alves, Giovany M. Figueiredo, Riccardo Molle. Multiple positive bound state solutions for a critical Choquard equation. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021061

[9]

Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021056

[10]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 955-974. doi: 10.3934/cpaa.2021001

[11]

Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021091

[12]

Miroslav Bulíček, Victoria Patel, Endre Süli, Yasemin Şengül. Existence of large-data global weak solutions to a model of a strain-limiting viscoelastic body. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021053

[13]

Harumi Hattori, Aesha Lagha. Global existence and decay rates of the solutions for a chemotaxis system with Lotka-Volterra type model for chemoattractant and repellent. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021071

[14]

Manil T. Mohan, Arbaz Khan. On the generalized Burgers-Huxley equation: Existence, uniqueness, regularity, global attractors and numerical studies. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3943-3988. doi: 10.3934/dcdsb.2020270

[15]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[16]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[17]

Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021012

[18]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[19]

Monica Conti, Lorenzo Liverani, Vittorino Pata. A note on the energy transfer in coupled differential systems. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021042

[20]

Filippo Giuliani. Transfers of energy through fast diffusion channels in some resonant PDEs on the circle. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021068

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (213)
  • HTML views (178)
  • Cited by (2)

Other articles
by authors

[Back to Top]