We study several quantitative properties of solutions to the incompressible Navier-Stokes equation in three and higher dimensions:
$ \begin{align} u_t -Δ u+u· \nabla u +\nabla p = 0, \ \ {\rm div} u = 0, \ \ u(0, x) = u_0(x). \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left( 1 \right)\label{NSa} \end{align}$
More precisely, for the blow up mild solutions with initial data in $L^{∞}(\mathbb{R}^d)$ and $H^{d/2 -1}(\mathbb{R}^d)$, we obtain a concentration phenomenon and blowup profile decomposition respectively. On the other hand, if the Fourier support has the form ${\rm supp} \ \widehat{u_0} \subset \{ξ∈ \mathbb{R}^n: ξ_1≥ L \}$ and $ \|u_0\|_{∞} \ll L$ for some $L >0$, then (1) has a unique global solution $u∈ C(\mathbb{R}_+, L^∞)$. In 3D, we show the compactness of the set consisting of minimal-$L^p$ singularity-generating initial data with $3<p< ∞$, furthermore, if the mild solution with data in $L^p({{\mathbb{R}}^{3}})$ blows up in a Type-Ⅰ manner, we prove the existence of a blowup solution which is uniformly bounded in critical Besov spaces $\dot B^{-1+6/p}_{p/2, ∞}({{\mathbb{R}}^{3}})$.
Citation: |
[1] |
B. Abe, The Navier-Stokes equations in a space of bounded functions, Commun. Math. Phys., 338 (2015), 849-865.
![]() |
[2] |
D. Albritton, Blow-up criteria for the Navier-Stokes equations in non-endpoint critical Besov spaces, preprint, arXiv: 1612.04439.
![]() |
[3] |
P. Auscher, S. Dubois and P. Tchamitchian, On the stability of global solutions to Navier-Stokes equations in the space, J. Math. Pures Appl., 83 (2004), 673-697.
![]() |
[4] |
H. Bae, A. Biswas and E. Tadmor, Analyticity and decay estimates of the Navier-Stokes equations in critical Besov spaces, Arch. Rational Mech. Anal., 205 (2012), 963-991.
![]() |
[5] |
H. Bahouri, J. -Y. Chemin and R. Danchin,
Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, 343, Springer, Heidelberg, 2011.
![]() |
[6] |
T. Barker, Uniqueness results for weak Leray-Hopf solutions of the Navier-Stokes system with initial values in critical spaces, J. Math. Fluid Mech., 20 (2018), 133-160.
![]() |
[7] |
T. Barker and G. Seregin, On global solutions to the Navier-Stokes system with large $L^{3, ∞}$ initial data, preprint, arXiv: 1603.03211.
![]() |
[8] |
J. Bergh and J. Löfström,
Interpolation Spaces, Springer-Verlag, 1976.
![]() |
[9] |
J. Bourgain, Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case, J. Amer. Math. Soc., 12 (1999), 145-171.
![]() |
[10] |
J. Bourgain and N. Pavlovic, Ill-posedness of the Navier-Stokes equations in a critical space in 3D, J. Funct. Anal., 255 (2008), 2233-2247.
![]() |
[11] |
L. Caffarelli, R. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math., 35 (1982), 771-831.
![]() |
[12] |
C. P. Calderón, Existence of weak solutions for the Navier-Stokes equations with initial data in $L^p$, Trans. Amer. Math. Soc., 318 (1990), 179-200.
![]() |
[13] |
M. Cannone,
Ondelettes, Paraproduits et Navier-Stokes,
(French) [Wavelets, Paraproducts and Navier-Stokes], Diderot Editeur, Paris, 1995.
![]() |
[14] |
M. Cannone and Y. Meyer, Littlewood-Paley decomposition and Navier-Stokes equations, Methods Appl. Anal., 2 (1995), 307-319.
![]() |
[15] |
M. Cannone, A generalization of a theorem by Kato on Navier-Stokes equations, Rev. Mat. Iberoamericana, 13 (1997), 515-541.
![]() |
[16] |
J.-Y. Chemin, Théorémes d'unicité pour le systéme de Navier-Stokes tridimensionnel, J. Anal. Math., 77 (1999), 27-50.
![]() |
[17] |
J.-Y. Chemin, I. Gallagher and M. Paicu, Global regularity for some classes of large solutions to the Navier-Stokes equations, Ann. of Math., 173 (2011), 983-1012.
![]() |
[18] |
J. C. Cortissoz, J. A. Montero and C. E. Pinilla, On lower bounds for possible blow-up solutions to the periodic Navier-Stokes equation,
J. Math. Phys. , 55 (2014), 033101.
![]() |
[19] |
H. Dong and D. Du, The Navier-Stokes equation in the critical Lebesgue space, Commun. Math. Phys., 292 (2009), 811-827.
![]() |
[20] |
L. Escauriaza, G. Seregin and V. Sverak, $L_{3,∞}$ solutions of Navier-Stokes equations and backward uniquness, Uspekhi Mat. Nauk., 58 (2003), 3-44.
![]() |
[21] |
C. Foias and R. Temam, Gevrey class regularity for the solutions of the Navier-Stokes equations, J. Funct. Anal., 87 (1989), 359-369.
![]() |
[22] |
I. Gallagher, Profile decomposition for solutions of the Navier-Stokes equations, Bull. Soc. Math. France, 129 (2001), 285-316.
![]() |
[23] |
I. Gallagher, D. Iftimie and F. Planchon, Asympototics and stability for global solutions to the Navier-Stokes equations, Ann. Inst. Fourier(Grenoble), 53 (2003), 1387-1424.
![]() |
[24] |
I. Gallagher, G. S. Koch and F. Planchnon, A profile decomposition approach to the $L^∞_t(L^3_x)$ Navier-Stokes regularity criterion, Math. Ann., 355 (2013), 1527-1559.
![]() |
[25] |
I. Gallagher, G. S. Koch and F. Planchon, Blow-up of critical Besov norms at a potential Navier-Stokes singularity, Comm. Math. Phys., 343 (2016), 39-82.
![]() |
[26] |
P. Germain, The second iterate for the Navier-Stokes equation, J. Funct. Anal., 255 (2008), 2248-2264.
![]() |
[27] |
P. Gérard, Description du défaut de compacité de l'injection de Sobolev, ESAIM Control Optim. Calc. Var., 3 (1998), 213-233.
![]() |
[28] |
Y. Giga, Solutions for semilinear parabolic equations in $L_p$ and regularity of weak solutions of the Navier-Stokes system, J. Differ. Equations, 62 (1986), 182-212.
![]() |
[29] |
Y. Giga, K. Inui and S. Matsui, On the Cauchy problem for the Navier-Stokes equations with
nondecaying initial data, in Advances in Fluid Dynamics, vol. 4 of Quad. Mat., pp. 27–68.
Dept. Math., Seconda Univ. Napoli, Caserta (1999).
![]() |
[30] |
Y. Giga and T. Miyakawa, Solutions in $L^r$ of the Navier-Stokes initial value problem, Arch. Rational Mech. Anal., 89 (1985), 267-281.
![]() |
[31] |
Y. Giga and T. Miyakawa, Navier-Stokes flow in $\mathbb{R}^3$ with measures as initial vorticity and Morrey spaces, Comm. Partial Differential Equations, 14 (1989), 577-618.
![]() |
[32] |
C. Huang and B. Wang, Analyticity for the (generalized) Navier-Stokes equations with rough initial data, preprint, arXiv: 1310.2141.
![]() |
[33] |
T. Iwabuchi, Navier-Stokes equations and nonlinear heat equations in modulation spaces with negative derivative indices, J. Differential Equations, 248 (2010), 1972-2002.
![]() |
[34] |
H. Jia and V. Sverak, Minimal $L_3$
-initial data for potential Navier-Stokes singularities, SIAM J. Math. Anal., 45 (2013), 1448-1459.
![]() |
[35] |
T. Kato, Strong $L^p$ solutions of the Navier-Stokes equations in $ \mathbb{{R}}^m$, with applications to weak solutions, Math. Z., 187 (1984), 471-480.
![]() |
[36] |
C. E. Kenig and G. S. Koch, An alternative approach to regularity for the Navier-Stokes equations in critical spaces, Ann. l'Inst. H. Poincare (C) Non Linear Anal., 28 (2011), 159-187.
![]() |
[37] |
C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy critical focusing nonlinear wave equations, Acta Math., 201 (2008), 147-212.
![]() |
[38] |
G. S. Koch, Profile decompositions for critical Lebesgue and Besov space embeddings, Indiana Univ. Math.J., 59 (2010), 1801-1830.
![]() |
[39] |
G. S. Koch, N. Nadirashvili, G. A. Seregin and V. Sverak, Liouville theorems for the Navier-Stokes equations and applications, Acta Math., 203 (2009), 83-105.
![]() |
[40] |
H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations, Adv. Math., 157 (2001), 22-35.
![]() |
[41] |
H. Kozono, T. Ogawa and Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations, Math. Z., 242 (2002), 251-278.
![]() |
[42] |
O. A. Ladyzhenskaya and G. A. Seregin, On partial Regularity of Suitable Weak Solutions to the Three-Dimensional Navier-Stokes equations, J. Math. Fluid Mech., 1 (1999), 365-387.
![]() |
[43] |
J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248.
![]() |
[44] |
P. G. Lemarié-Rieusset,
Recent Developments in the Navier-Stokes Problem, Chapman & Hall/CRC Research Notes in Mathematics, 431. Chapman & Hall/CRC, Boca Raton, FL, 2002.
![]() |
[45] |
P. G. Lemarié-Rieusset,
The Navier-Stokes Problem in the 21st Century, CRC Press, Boca Raton, FL, 2016.
![]() |
[46] |
F. H. Lin, A new proof of the Caffarelli-Kohn-Nirenberg theorem, Comm. Pure Appl. Math., 51 (1998), 241-257.
![]() |
[47] |
F. Planchon, Global strong solutions in Sobolev or Lebesgue spaces to the incompressible Navier-Stokes equations in $\mathbb{R}^3$, Ann, Inst. H. Poincare, AN, 13 (1996), 319-336.
![]() |
[48] |
F. Planchon, Asymptotic behavior of global solutions to the Navier-Stokes equations in ${{\mathbb{R}}^{3}}$, Rev. Mat. Iberoamericana, 14 (1998), 71-93.
![]() |
[49] |
G. Ponce, R. Racke, T. C. Sideris and E. S. Titi, Global stability of large solutions to the 3D Navier-Stokes equations, Comm. Math. Phys., 159 (1994), 329-341.
![]() |
[50] |
E. Poulon, About the possibility of minimal blow up for Navier-Stokes solutions with data in $\dot{H}^s(\mathbb{R}^3)$, preprint, arXiv: 1505.06197.
![]() |
[51] |
E. Poulon,
Etude Qualitative d'Eventuelles Singularités dans les Equation de Navier-Stokes Tridimensionnelles pour un Fluide Visqueux, Ph. D thesis, Université Pierre et Marie Curie, 2015.
![]() |
[52] |
J. C. Robinson, W. Sadowski and R. P. Silva, Lower bounds on blow up solutions of the three dimensional Navier-Stokes equations in homogeneous Sobolev spaces, Journal of Mathematical Physics, 260 (2011), 879-891.
![]() |
[53] |
W. Rusin and V. Sverak, Minimal initial data for potential Navier-Stokes singularities, J. Funct. Anal., 260 (2011), 879-891.
![]() |
[54] |
G. Seregin, A certain necessary condition of potential blow up for Navier-Stokes equations, Comm. Math. Phys., 312 (2012), 833-845.
![]() |
[55] |
G. Seregin and V. Sverak, On global weak solutions to the Cauchy problem ˇ for the Navier-Stokes equations with large $L_3$-initial data, Nonlinear Analysis, Theory, Methods and Applications, 154 (2017), 269-296.
![]() |
[56] |
G. Seregin, Necessary conditions of potential blow up for the Navier-Stokes equations, Zap. Nauchn. Sem. POMI, 385 (2010), 187-199.
![]() |
[57] |
G. Seregin,
Lecture Notes on Regularity Theory for the Navier-Stokes Equations World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015.
![]() |
[58] |
H. Triebel, Theory of Function Spaces, Birkhäuser–Verlag, 1983.
![]() |
[59] |
B. Wang, Exponential Besov spaces and their applications to certain evolution equations with dissipations, Commun. Pure Appl. Anal., 3 (2004), 883-919.
![]() |
[60] |
B. Wang, Z. Huo, C. Hao and Z. Guo,
Harmonic Analysis Method for Nonlinear Evolution Equations. I, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2011.
![]() |
[61] |
B. Wang, L. Zhao and B. Guo, Isometric decomposition operators, function spaces $E^λ_{p, q}$ and their applications to nonlinear evolution equations, J. Funct. Anal., 233 (2006), 1-39.
![]() |
[62] |
B. Wang, Ill-posedness for the Navier-Stokes equation in critical Besov spaces $\dot B^{-1}_{∞, q}$, Adv. in Math., 268 (2015), 350-372.
![]() |
[63] |
F. B. Weissler, The Navier-Stokes initial value problem in $L^p$, Arch. Rational Mech. Anal., 74 (1980), 219-230.
![]() |
[64] |
T. Yoneda, Ill-posedness of the 3D Navier-Stokes equations in a generalized Besov space near $BMO^{-1}$, J. Funct. Anal., 258 (2010), 3376-3387.
![]() |