# American Institute of Mathematical Sciences

September  2018, 17(5): 1723-1747. doi: 10.3934/cpaa.2018082

## Homoclinic solutions of discrete $\phi$-Laplacian equations with mixed nonlinearities

 School of Mathematics and Information Science, Guangzhou University, Center for Applied Mathematics, Guangzhou University, Guangzhou 510006, China

* Corresponding author

Received  March 2017 Revised  November 2017 Published  April 2018

By using critical point theory, we obtain some new sufficient conditions on the existence of homoclinic solutions of a class of nonlinear discrete $\phi$-Laplacian equations with mixed nonlinearities for the potentials being periodic or being unbounded, respectively. And we prove it is also necessary in some special cases. In addition, multiplicity results of homoclinic solutions for nonlinear discrete $\phi$-Laplacian equations with unbounded potentials have also been considered. In our paper, the nonlinearities can be mixed super $p$-linear with asymptotically $p$-linear at $∞$ for $p≥ 1$. To the best of our knowledge, there is no such result for the existence of homoclinic solutions with discrete $\phi$-Laplacian before. Finally, an extension has also been considered.

Citation: Genghong Lin, Zhan Zhou. Homoclinic solutions of discrete $\phi$-Laplacian equations with mixed nonlinearities. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1723-1747. doi: 10.3934/cpaa.2018082
##### References:
 [1] G. Arioli and F. Gazzola, Periodic motions of an infinite lattice of particles with nearest neighbor interaction, Nonlinear Anal., 26 (1996), 1103-1114. [2] S. Aubry, Breathers in nonlinear lattices: existence, linear stability and quantization, Physica D, 103 (1997), 201-250. [3] S. Aubry, Discrete breathers: localization and transfer of energy in discrete Hamiltonian nonlinear systems, Physica D, 216 (2006), 1-30. [4] G. Chen and S. Ma, Discrete nonlinear Schrödinger equations with superlinear nonlinearities, Appl. Math. Comput., 218 (2012), 5496-5507. [5] G. Chen and S. Ma, Homoclinic solutions of discrete nonlinear Schrödinger equations with asymptotically or super linear terms, Appl. Math. Comput., 232 (2014), 787-798. [6] W. Chen and M. Yang, Standing waves for periodic discrete nonlinear Schrödinger equations with asymptotically linear terms, Acta Math. Appl. Sin. Engl. Ser., 28 (2012), 351-360. [7] J. Cuevas, P. G. Kevrekidis, D. J. Frantzeskakis and B. A. Malomed, Discrete solitons in nonlinear Schrödinger lattices with a power-law nonlinearity, Physica D, 238 (2009), 67-76. [8] S. Flach and A. V. Gorbach, Discrete breathers-advance in theory and applications, Phys. Rep., 467 (2008), 1-116. [9] J. W. Fleischer, M. Segev, N. K. Efremidis and D. N. Christodoulides, Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices, Nature, 422 (2003), 147-150. [10] A. V. Gorbach and M. Johansson, Gap and out-gap breathers in a binary modulated discrete nonlinear Schrödinger model, Eur. Phys. J. D, 29 (2004), 77-93. [11] G. James, Centre manifold reduction for quasilinear discrete systems, J. Nonlinear Sci., 13 (2003), 27-63. [12] A. Khare, K. Rasmussen, M. Samuelsen and A. Saxena, Exact solutions of the saturable discrete nonlinear Schrödinger equation, J. Phys. A, 38 (2005), 807-814. [13] G. Kopidakis, S. Aubry and G. P. Tsironis, Targeted energy transfer through discrete breathers in nonlinear systems, Phys. Rev. Lett., 87 (2001), Art. ID 165501. [14] W. Krolikowski, B. L. Davies and C. Denz, Photorefractive solitons, IEEE J. Quant. Electron., 39 (2003), 3-12. [15] J. Kuang and Z. Guo, Homoclinic solutions of a class of periodic difference equations with asymptotically linear nonlinearities, Nonlinear Anal., 89 (2013), 208-218. [16] G. Lin and Z. Zhou, Periodic and subharmonic solutions for a $2n$th-order difference equation containing both advance and retardation with $\phi$-Laplacian, Adv. Difference Equ., 2014(2014), Art. ID 74. [17] G. Lin and Z. Zhou, Homoclinic solutions in periodic difference equations with mixed nonlinearities, Math. Method Appl. Sci., 39 (2016), 245-260. [18] G. Lin and Z. Zhou, Homoclinic solutions in non-periodic discrete $\phi$-Laplacian equations with mixed nonlinearities, Appl. Math. lett., 64 (2017), 15-20. [19] S. Liu and S. Li, Infinitely many solutions for a superlinear elliptic equation, Acta Math. Sinica Chin. Ser., 46 (2003), 625-630. [20] R. Livi, R. Franzosi and G. L. Oppo, Self-localization of Bose-Einstein condensates in optical lattices via boundary dissipation, Phys. Rev. Lett., 97 (2006), Art. ID 060401. [21] S. Ma and Z. Wang, Multibump solutions for discrete periodic nonlinear Schrödinger equations, Z. Angew. Math. Phys., 64 (2013), 1413-1442. [22] A. Mai and Z. Zhou, Ground state solutions for the periodic discrete nonlinear Schrödinger equations with superlinear nonlinearities, Abstr. Appl. Anal., 2013 (2013), Art. ID 317139. [23] J. Mawhin, Periodic solutions of second order nonlinear difference systems with $\phi$-Laplacian: a variational approach, Nonlinear Anal., 75 (2012), 4672-4687. [24] J. Mawhin, Periodic solutions of second order Lagrangian difference systems with bounded or singular $\phi$-Laplacian and periodic potential, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 1065-1076. [25] A. Pankov, Gap solitons in periodic discrete nonlinear Schrödinger equations with saturable nonlinearities, J. Math. Anal. Appl., 371 (2010), 254-265. [26] A. Pankov and V. Rothos, Periodic and decaying solutions in discrete nonlinear Schrödinger with saturable nonlinearity, Proc. R. Soc. A, 464 (2008), 3219-3236. [27] H. Shi, Gap solitons in periodic discrete Schrödinger equations with nonlinearity, Acta Appl. Math., 109 (2010), 1065-1075. [28] H. Shi and H. Zhang, Existence of gap solitons in a periodic discrete nonlinear Schrödinger equations, J. Math. Anal. Appl., 361 (2010), 411-419. [29] C. A. Stuart, Locating Cerami sequences in a mountain pass geometry, Commun. Appl. Anal., 2-4 (2011), 569-588. [30] A. A. Sukhorukov and Y. S. Kivshar, Generation and stability of discrete gap solitons, Opt. Lett., 28 (2003), 2345-2347. [31] X. Tang, Non-Nehari manifold method for periodic discrete superlinear Schrödinger equation, Acta Math. Sin. Engl. Ser., 32 (2016), 463-473. [32] X. Tang and J. Chen, Infinitely many homoclinic orbits for a class of discrete Hamiltonian systems, Adv. Difference Equ., 2013 (2013), Art. ID 242. [33] M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996. [34] M. Yang, W. Chen and Y. Ding, Solutions for discrete periodic Schrödinger equations with spectrum $0$, Acta. Appl. Math., 110 (2010), 1475-1488. [35] G. Zhang and A. Pankov, Standing waves of the discrete nonlinear Schrödinger equations with growing potentials, Commun. Math. Anal., 5 (2008), 38-49. [36] Z. Zhou and D. Ma, Multiplicity results of breathers for the discrete nonlinear Schrödinger equations with unbounded potentials, Sci. China Math., 58 (2015), 781-790. [37] Z. Zhou and J. Yu, On the existence of homoclinic solutions of a class of discrete nonlinear periodic systems, J. Differential Equations, 249 (2010), 1199-1212. [38] Z. Zhou and J. Yu, Homoclinic solutions in periodic nonlinear difference equations with superlinear nonlinearity, Acta Math. Appl. Sin. Engl. Ser., 29 (2013), 1809-1822. [39] Z. Zhou, J. Yu and Y. Chen, Homoclinic solutions in periodic diffrence equations with saturable nonlinearity, Sci. China Math., 54 (2011), 83-93. [40] W. Zou, Variant fountain theorems and their applications, Manuscripta Math., 104 (2001), 343-358.

show all references

##### References:
 [1] G. Arioli and F. Gazzola, Periodic motions of an infinite lattice of particles with nearest neighbor interaction, Nonlinear Anal., 26 (1996), 1103-1114. [2] S. Aubry, Breathers in nonlinear lattices: existence, linear stability and quantization, Physica D, 103 (1997), 201-250. [3] S. Aubry, Discrete breathers: localization and transfer of energy in discrete Hamiltonian nonlinear systems, Physica D, 216 (2006), 1-30. [4] G. Chen and S. Ma, Discrete nonlinear Schrödinger equations with superlinear nonlinearities, Appl. Math. Comput., 218 (2012), 5496-5507. [5] G. Chen and S. Ma, Homoclinic solutions of discrete nonlinear Schrödinger equations with asymptotically or super linear terms, Appl. Math. Comput., 232 (2014), 787-798. [6] W. Chen and M. Yang, Standing waves for periodic discrete nonlinear Schrödinger equations with asymptotically linear terms, Acta Math. Appl. Sin. Engl. Ser., 28 (2012), 351-360. [7] J. Cuevas, P. G. Kevrekidis, D. J. Frantzeskakis and B. A. Malomed, Discrete solitons in nonlinear Schrödinger lattices with a power-law nonlinearity, Physica D, 238 (2009), 67-76. [8] S. Flach and A. V. Gorbach, Discrete breathers-advance in theory and applications, Phys. Rep., 467 (2008), 1-116. [9] J. W. Fleischer, M. Segev, N. K. Efremidis and D. N. Christodoulides, Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices, Nature, 422 (2003), 147-150. [10] A. V. Gorbach and M. Johansson, Gap and out-gap breathers in a binary modulated discrete nonlinear Schrödinger model, Eur. Phys. J. D, 29 (2004), 77-93. [11] G. James, Centre manifold reduction for quasilinear discrete systems, J. Nonlinear Sci., 13 (2003), 27-63. [12] A. Khare, K. Rasmussen, M. Samuelsen and A. Saxena, Exact solutions of the saturable discrete nonlinear Schrödinger equation, J. Phys. A, 38 (2005), 807-814. [13] G. Kopidakis, S. Aubry and G. P. Tsironis, Targeted energy transfer through discrete breathers in nonlinear systems, Phys. Rev. Lett., 87 (2001), Art. ID 165501. [14] W. Krolikowski, B. L. Davies and C. Denz, Photorefractive solitons, IEEE J. Quant. Electron., 39 (2003), 3-12. [15] J. Kuang and Z. Guo, Homoclinic solutions of a class of periodic difference equations with asymptotically linear nonlinearities, Nonlinear Anal., 89 (2013), 208-218. [16] G. Lin and Z. Zhou, Periodic and subharmonic solutions for a $2n$th-order difference equation containing both advance and retardation with $\phi$-Laplacian, Adv. Difference Equ., 2014(2014), Art. ID 74. [17] G. Lin and Z. Zhou, Homoclinic solutions in periodic difference equations with mixed nonlinearities, Math. Method Appl. Sci., 39 (2016), 245-260. [18] G. Lin and Z. Zhou, Homoclinic solutions in non-periodic discrete $\phi$-Laplacian equations with mixed nonlinearities, Appl. Math. lett., 64 (2017), 15-20. [19] S. Liu and S. Li, Infinitely many solutions for a superlinear elliptic equation, Acta Math. Sinica Chin. Ser., 46 (2003), 625-630. [20] R. Livi, R. Franzosi and G. L. Oppo, Self-localization of Bose-Einstein condensates in optical lattices via boundary dissipation, Phys. Rev. Lett., 97 (2006), Art. ID 060401. [21] S. Ma and Z. Wang, Multibump solutions for discrete periodic nonlinear Schrödinger equations, Z. Angew. Math. Phys., 64 (2013), 1413-1442. [22] A. Mai and Z. Zhou, Ground state solutions for the periodic discrete nonlinear Schrödinger equations with superlinear nonlinearities, Abstr. Appl. Anal., 2013 (2013), Art. ID 317139. [23] J. Mawhin, Periodic solutions of second order nonlinear difference systems with $\phi$-Laplacian: a variational approach, Nonlinear Anal., 75 (2012), 4672-4687. [24] J. Mawhin, Periodic solutions of second order Lagrangian difference systems with bounded or singular $\phi$-Laplacian and periodic potential, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 1065-1076. [25] A. Pankov, Gap solitons in periodic discrete nonlinear Schrödinger equations with saturable nonlinearities, J. Math. Anal. Appl., 371 (2010), 254-265. [26] A. Pankov and V. Rothos, Periodic and decaying solutions in discrete nonlinear Schrödinger with saturable nonlinearity, Proc. R. Soc. A, 464 (2008), 3219-3236. [27] H. Shi, Gap solitons in periodic discrete Schrödinger equations with nonlinearity, Acta Appl. Math., 109 (2010), 1065-1075. [28] H. Shi and H. Zhang, Existence of gap solitons in a periodic discrete nonlinear Schrödinger equations, J. Math. Anal. Appl., 361 (2010), 411-419. [29] C. A. Stuart, Locating Cerami sequences in a mountain pass geometry, Commun. Appl. Anal., 2-4 (2011), 569-588. [30] A. A. Sukhorukov and Y. S. Kivshar, Generation and stability of discrete gap solitons, Opt. Lett., 28 (2003), 2345-2347. [31] X. Tang, Non-Nehari manifold method for periodic discrete superlinear Schrödinger equation, Acta Math. Sin. Engl. Ser., 32 (2016), 463-473. [32] X. Tang and J. Chen, Infinitely many homoclinic orbits for a class of discrete Hamiltonian systems, Adv. Difference Equ., 2013 (2013), Art. ID 242. [33] M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996. [34] M. Yang, W. Chen and Y. Ding, Solutions for discrete periodic Schrödinger equations with spectrum $0$, Acta. Appl. Math., 110 (2010), 1475-1488. [35] G. Zhang and A. Pankov, Standing waves of the discrete nonlinear Schrödinger equations with growing potentials, Commun. Math. Anal., 5 (2008), 38-49. [36] Z. Zhou and D. Ma, Multiplicity results of breathers for the discrete nonlinear Schrödinger equations with unbounded potentials, Sci. China Math., 58 (2015), 781-790. [37] Z. Zhou and J. Yu, On the existence of homoclinic solutions of a class of discrete nonlinear periodic systems, J. Differential Equations, 249 (2010), 1199-1212. [38] Z. Zhou and J. Yu, Homoclinic solutions in periodic nonlinear difference equations with superlinear nonlinearity, Acta Math. Appl. Sin. Engl. Ser., 29 (2013), 1809-1822. [39] Z. Zhou, J. Yu and Y. Chen, Homoclinic solutions in periodic diffrence equations with saturable nonlinearity, Sci. China Math., 54 (2011), 83-93. [40] W. Zou, Variant fountain theorems and their applications, Manuscripta Math., 104 (2001), 343-358.
 [1] Jiaoxiu Ling, Zhan Zhou. Positive solutions of the discrete Robin problem with $\phi$-Laplacian. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3183-3196. doi: 10.3934/dcdss.2020338 [2] Peng Mei, Zhan Zhou, Genghong Lin. Periodic and subharmonic solutions for a 2$n$th-order $\phi_c$-Laplacian difference equation containing both advances and retardations. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 2085-2095. doi: 10.3934/dcdss.2019134 [3] Fengshuang Gao, Yuxia Guo. Infinitely many solutions for quasilinear equations with critical exponent and Hardy potential in $\mathbb{R}^N$. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5591-5616. doi: 10.3934/dcds.2020239 [4] Chengxin Du, Changchun Liu. Time periodic solution to a two-species chemotaxis-Stokes system with $p$-Laplacian diffusion. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4321-4345. doi: 10.3934/cpaa.2021162 [5] Magdalena Foryś-Krawiec, Jiří Kupka, Piotr Oprocha, Xueting Tian. On entropy of $\Phi$-irregular and $\Phi$-level sets in maps with the shadowing property. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1271-1296. doi: 10.3934/dcds.2020317 [6] Nikolay Dimitrov, Stepan Tersian. Existence of homoclinic solutions for a nonlinear fourth order $p$-Laplacian difference equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 555-567. doi: 10.3934/dcdsb.2019254 [7] Jianqin Zhou, Wanquan Liu, Xifeng Wang, Guanglu Zhou. On the $k$-error linear complexity for $p^n$-periodic binary sequences via hypercube theory. Mathematical Foundations of Computing, 2019, 2 (4) : 279-297. doi: 10.3934/mfc.2019018 [8] Gabriele Bonanno, Giuseppina D'Aguì. Mixed elliptic problems involving the $p-$Laplacian with nonhomogeneous boundary conditions. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5797-5817. doi: 10.3934/dcds.2017252 [9] Yong Xia, Ruey-Lin Sheu, Shu-Cherng Fang, Wenxun Xing. Double well potential function and its optimization in the $N$ -dimensional real space-part Ⅱ. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1307-1328. doi: 10.3934/jimo.2016074 [10] Shu-Cherng Fang, David Y. Gao, Gang-Xuan Lin, Ruey-Lin Sheu, Wenxun Xing. Double well potential function and its optimization in the $N$ -dimensional real space-part Ⅰ. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1291-1305. doi: 10.3934/jimo.2016073 [11] Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $p$-Laplacian. Communications on Pure and Applied Analysis, 2021, 20 (2) : 835-865. doi: 10.3934/cpaa.2020293 [12] Xin-Guang Yang, Marcelo J. D. Nascimento, Maurício L. Pelicer. Uniform attractors for non-autonomous plate equations with $p$-Laplacian perturbation and critical nonlinearities. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1937-1961. doi: 10.3934/dcds.2020100 [13] Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $N-$Laplacian problems with critical double exponential nonlinearities. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306 [14] Yao Du, Jiabao Su, Cong Wang. On the critical Schrödinger-Poisson system with $p$-Laplacian. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1329-1342. doi: 10.3934/cpaa.2022020 [15] Jean Mawhin. Periodic solutions of second order Lagrangian difference systems with bounded or singular $\phi$-Laplacian and periodic potential. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 1065-1076. doi: 10.3934/dcdss.2013.6.1065 [16] Pablo Amster, Mariel Paula Kuna, Dionicio Santos. Stability, existence and non-existence of $T$-periodic solutions of nonlinear delayed differential equations with $\varphi$-Laplacian. Communications on Pure and Applied Analysis, 2022, 21 (8) : 2723-2737. doi: 10.3934/cpaa.2022070 [17] Christian Aarset, Christian Pötzsche. Bifurcations in periodic integrodifference equations in $C(\Omega)$ Ⅱ: Discrete torus bifurcations. Communications on Pure and Applied Analysis, 2020, 19 (4) : 1847-1874. doi: 10.3934/cpaa.2020081 [18] Sugata Gangopadhyay, Goutam Paul, Nishant Sinha, Pantelimon Stǎnicǎ. Generalized nonlinearity of $S$-boxes. Advances in Mathematics of Communications, 2018, 12 (1) : 115-122. doi: 10.3934/amc.2018007 [19] Yong Luo, Shu Zhang. Concentration behavior of ground states for $L^2$-critical Schrödinger Equation with a spatially decaying nonlinearity. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1481-1504. doi: 10.3934/cpaa.2022026 [20] Umberto De Maio, Peter I. Kogut, Gabriella Zecca. On optimal $L^1$-control in coefficients for quasi-linear Dirichlet boundary value problems with $BMO$-anisotropic $p$-Laplacian. Mathematical Control and Related Fields, 2020, 10 (4) : 827-854. doi: 10.3934/mcrf.2020021

2021 Impact Factor: 1.273

## Metrics

• HTML views (322)
• Cited by (21)

## Other articlesby authors

• on AIMS
• on Google Scholar