# American Institute of Mathematical Sciences

September  2018, 17(5): 2039-2061. doi: 10.3934/cpaa.2018097

## Exponential decay for the coupled Klein-Gordon-Schrödinger equations with locally distributed damping

 Department of Mathematics, State University of Maringa, Maringa, 87020-900, Brazil

* Research partially supported by the CNPq grant 300631/2003-0
** Research partially supported by CAPES

Received  September 2017 Revised  December 2017 Published  April 2018

The following coupled damped Klein-Gordon-Schrödinger equations are considered
 $\begin{array}{l}i\psi t + \Delta \psi + i\alpha b(x){( - \Delta )^{\frac{1}{2}}}b(x)\psi = \phi \psi {\chi _\omega }\;{\rm{in}}\;\Omega \times (0,\infty ),(\alpha > 0)\\\phi tt - \Delta \phi + a(x)\phi t = {\left| \psi \right|^2}{\chi _\omega }\;{\rm{in}}\;\Omega \times (0,\infty ),\end{array}$
where
 $Ω$
is a bounded domain of
 $\mathbb{R}^n$
,
 $n = 2$
, with smooth boundary
 $Γ$
and
 $ω$
is a neighbourhood of
 $\partial Ω$
satisfying the geometric control condition. Here
 $χ_{ω}$
represents the characteristic function of
 $ω$
. Assuming that
 $a, b∈ W^{1,∞}(Ω)\cap C^∞(Ω)$
are nonnegative functions such that
 $a(x) ≥ a_0 >0$
in
 $ω$
and
 $b(x) ≥ b_{0} > 0$
in
 $ω$
, the exponential decay rate is proved for every regular solution of the above system. Our result generalizes substantially the previous results given by Cavalcanti et. al in the reference [7].
Citation: A. F. Almeida, M. M. Cavalcanti, J. P. Zanchetta. Exponential decay for the coupled Klein-Gordon-Schrödinger equations with locally distributed damping. Communications on Pure and Applied Analysis, 2018, 17 (5) : 2039-2061. doi: 10.3934/cpaa.2018097
##### References:
 [1] L. Aloui, Smoothing effect for regularized Schrödinger equation on bounded domains, Asymptot. Anal., 59 (2008), 179-193. [2] L. Aloui, Smoothing effect for regularized Schrödinger equation on compact manifolds, Collect. Math., 59 (2008), 53-62. [3] A. Bachelot, Probléme de Cauchy pour des systémes hyperboliques semi-linéares, Ann. Inst. H. Poincaré Anal. non Linéaire, 1 (1984), 453-478. [4] J. B. Baillon and J. M. Chadam, The Cauchy problem for the coupled Klein-GordonSchr¨odinger equations, in Contemporary Developments in Continuum Mechanics and Partial Differential Equations, North Holland, Amsterdam, (1978), 37–44. [5] C. Banquet, L. C. F. Ferreira and E. J. Villamizar-Roa, On existence and scattering theory for the Klein-Gordon-Schrödinger system in an infinite L2-norm setting, Ann. Mat. Pura Appl., 194 (2015), 781-804. [6] P. Biler, Attractors for the system of Schrödinger and Klein-Gordon equations with Yukawa coupling, SIAM J. Math. Anal., 21 (1990), 1190-1212. [7] V. Bisognin, M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. Soriano, Uniform decay for the Klein-Gordon-Schrödinger equations with locally distributed damping, NoDEA, Nonlinear Differ. Equ. Appl., 15 (2008), 91-113. [8] C. A. Bortot and M. M. Cavalcanti, Asymptotic stability for the damped Schrödinger equation on noncompact Riemannian manifolds and exterior domains, Comm. Partial Differential Equations, 39 (2014), 1791-1820. [9] C. A. Bortot and W. J. Corrêa, Exponential stability for the defocusing semilinear Schrödinger equation with locally distributed damping on a bounded domain, Differential and Integral Equations, 31 (2018), 273-300. [10] N. Burq, P. Gérard and N. Tzvetkov, On nonlinear Schrödinger equations in exterior domains, [Equations de Schrödinger non linéaires dans des domaines extrieurs,], Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, 21 (2004), 295-318. [11] M. Cavalcanti and V. Domingos Cavalcanti, Global existence and uniform decay for the coupled Klein-Gordon-Schrödinger equations, NoDEA, Nonlinear differ. equ. appl., 7 (2000), 285-307. [12] M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. A. Soriano and F. Natali, Qualitative aspects for the cubic nonlinear Schrödinger equations with localized damping: exponential and polynomial stabilization, J. Differential Equations, 248 (2010), 2955-2971. [13] J. Colliander, J. Holmer and N. Tzirakis, Low regularity global well-posedness for the Zakharov and Klein-Gordon-Schrödinger systems, Trans. Amer. Soc. Math., 360 (2008), 4619-4638. [14] P. Counstantin and J. C. Saut, Local smoothing properties of dispersive equation, Journal of the American Mathematical Society, 1 (), 413-439. [15] Z. Dai and P. Gao, Exponential attractor for dissipative Klein-Gordon-Schrödinger equations in R3, Chim. Ann. Math. Ser. A., 21 (2000), 241-250. [16] I. Fukuda and M. Tsutsumi, On coupled Klein-Gordon-Schrödinger equations Ⅰ, Bull. Sci. Engrg. Res. Lab. Waseda Univ., 69 (1975), 51-62. [17] I. Fukuda and M. Tsutsumi, On coupled Klein-Gordon-Schrödinger equations Ⅱ, J. Math. Analysis Applic., 66 (1978), 358-378. [18] I. Fukuda and M. Tsutsumi, On coupled Klein-Gordon Schrödinger equations Ⅲ-Higher order interaction, decay and blow-up, Math. Japonica, 24 (1979), 307-321. [19] I. Fukuda and M. Tsutsumi, On the Yukawa-coupled Klein-Gordon-Schödinger equations in three space dimensions, Proc. Japan Acad., 51 (1975), 402-405. [20] B. Guo and Y. Li, Attractor for dissipative Klein-Gordon-Schrödinger equations in $\bf{R}^3$, Journal of Differential Equations, 136 (1997), 356-377. [21] B. Guo and Y. Li, Attractor for the dissipative generalized Klein-Gordon-Schrödinger equations, J. Partial Differ. Equations, 11 (1998), 260-272. [22] B. Guo and Y. Li, Asymptotic smoothing effect of solutions to weakly dissipative Klein-Gordon-Schrödinger equations, J. Math. Anal. Appl., 282 (2003), 256-265. [23] Y. Han, On the Cauchy problem for the coupled Klein-Gordon-Schrödinger system with rough data, Discret. Contin. Dyn. Syst., 12 (2005), 233-242. [24] N. Hayashi, Global strong solutions of coupled Klein-Gordon-Schrödinger equations, Funkcialaj Ekvacioj, 29 (1986), 299-307. [25] N. Hayashi and W. Von Wahl, On the global strong solutions of coupled Klein-Gordon-Schrödinger equations, J. Math. Soc. Japan, 39 (1987), 489-497. [26] H. Lange and B. Wang, Regularity of the global attractor for the Klein-Gordon-Schrödinger equation, Math. Methods Appl. Sci., 22 (1999), 1535-1554. [27] H. Lange and B. Wang, Attractors for the Klein-Gordon-Schrödinger equation, J. Math. Phys., 40 (1999), 2445-2457. [28] Y. Li, Q. Shi, C. Wang and S. Wang, Well-posedness for the nonlinear Klein-Gordon-Schrödinger equations with heterointeractions, J. Math. Phys., 51 (2010), 032-102. [29] J. L. Lions, Quelques Métodes de Résolution des Problémes Aux Limites Non Linéaires, Dunod, Paris, 1969. [30] J. L. Lions, Controlabilité exacte, perturbations et Stabilisation de systèmes distribués, Tome 1, Masson, Paris, 1988. [31] J. L. Lions-E. Magenes, Problèmes Aux Limites Non Homogènes et Applications, Dunod, Paris, 1968, Vol. 1. [32] C. Miao and G. Xu, Global solutions of the Klein-Gordon-Schrödinger system with rough data in ${\mathbb{R}^{2 + 1}}$, J. Differ. Equ., 227 (2006), 365-405. [33] O. Goubet, A. Hakim and A. Mostafa, Regularity of the attractor for a coupled Klein-Gordon-Schrödinger system, Diff. Integal Equ., 16 (2003), 573-581. [34] M. Ohta, Stability of Stationary States for the Coupled Klein-Gordon-Schrödinger Equations, Nonlinear Analysis, Theory, Methods and Appl., 27 (1996), 455-461. [35] T. Ozawa and Y. Tsutsumi, Asymptotic behaviour of solutions for the coupled Klein-Gordon-Schrödinger equations, Adv. Stud. Pure Math., 23 (1994), 295-305. [36] H. Pecher, Global solutions of the Klein-Gordon-Schrödinger system with rough data, Differ. Int. Equ., 17 (2004), 179-214. [37] M. N. Poulou and N. M. Stavrakakis, Global attractor for a system of Klein-Gordon-Schrödinger type in all R, Nonlinear Anal., 74 (2011), 2548-2562. [38] M. N. Poulou and N. M. Stavrakakis, Uniform decay for a local dissipative Klein-Gordon-Schrödinger type system, Electron. J. Differential Equations, (2012), No. 179. 16pp. [39] A. Shimomura, Scattering theory for the coupled Klein-Gordon-Schrödinger equations in two space dimensions, J. Math. Sci. Univ. Tokyo, 10 (2003), 661-685. [40] A. Shimomura, Scattering theory for the coupled Klein-Gordon-Schrödinger equations in two space dimensions. Ⅱ, Hokkaido Math. J., 34 (2005), 405-433. [41] N. Tzirakis, The Cauchy problem for the Klein-Gordon-Schrödinger system in low dimensions below the energy space, Comm. Partial Differ. Equ., 30 (2005), 605-641. [42] B. Wang, Classical global solutions for non-linear Klein-Gordon-Schrödinger equations, Math. Methods Appl. Sci., 20 (1997), 599-616. [43] H. Yukawa, On the interaction of elementary particles Ⅰ, Proc. Physico-Math. Soc. Japan, 17 (1935), 48-57.

show all references

##### References:
 [1] L. Aloui, Smoothing effect for regularized Schrödinger equation on bounded domains, Asymptot. Anal., 59 (2008), 179-193. [2] L. Aloui, Smoothing effect for regularized Schrödinger equation on compact manifolds, Collect. Math., 59 (2008), 53-62. [3] A. Bachelot, Probléme de Cauchy pour des systémes hyperboliques semi-linéares, Ann. Inst. H. Poincaré Anal. non Linéaire, 1 (1984), 453-478. [4] J. B. Baillon and J. M. Chadam, The Cauchy problem for the coupled Klein-GordonSchr¨odinger equations, in Contemporary Developments in Continuum Mechanics and Partial Differential Equations, North Holland, Amsterdam, (1978), 37–44. [5] C. Banquet, L. C. F. Ferreira and E. J. Villamizar-Roa, On existence and scattering theory for the Klein-Gordon-Schrödinger system in an infinite L2-norm setting, Ann. Mat. Pura Appl., 194 (2015), 781-804. [6] P. Biler, Attractors for the system of Schrödinger and Klein-Gordon equations with Yukawa coupling, SIAM J. Math. Anal., 21 (1990), 1190-1212. [7] V. Bisognin, M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. Soriano, Uniform decay for the Klein-Gordon-Schrödinger equations with locally distributed damping, NoDEA, Nonlinear Differ. Equ. Appl., 15 (2008), 91-113. [8] C. A. Bortot and M. M. Cavalcanti, Asymptotic stability for the damped Schrödinger equation on noncompact Riemannian manifolds and exterior domains, Comm. Partial Differential Equations, 39 (2014), 1791-1820. [9] C. A. Bortot and W. J. Corrêa, Exponential stability for the defocusing semilinear Schrödinger equation with locally distributed damping on a bounded domain, Differential and Integral Equations, 31 (2018), 273-300. [10] N. Burq, P. Gérard and N. Tzvetkov, On nonlinear Schrödinger equations in exterior domains, [Equations de Schrödinger non linéaires dans des domaines extrieurs,], Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, 21 (2004), 295-318. [11] M. Cavalcanti and V. Domingos Cavalcanti, Global existence and uniform decay for the coupled Klein-Gordon-Schrödinger equations, NoDEA, Nonlinear differ. equ. appl., 7 (2000), 285-307. [12] M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. A. Soriano and F. Natali, Qualitative aspects for the cubic nonlinear Schrödinger equations with localized damping: exponential and polynomial stabilization, J. Differential Equations, 248 (2010), 2955-2971. [13] J. Colliander, J. Holmer and N. Tzirakis, Low regularity global well-posedness for the Zakharov and Klein-Gordon-Schrödinger systems, Trans. Amer. Soc. Math., 360 (2008), 4619-4638. [14] P. Counstantin and J. C. Saut, Local smoothing properties of dispersive equation, Journal of the American Mathematical Society, 1 (), 413-439. [15] Z. Dai and P. Gao, Exponential attractor for dissipative Klein-Gordon-Schrödinger equations in R3, Chim. Ann. Math. Ser. A., 21 (2000), 241-250. [16] I. Fukuda and M. Tsutsumi, On coupled Klein-Gordon-Schrödinger equations Ⅰ, Bull. Sci. Engrg. Res. Lab. Waseda Univ., 69 (1975), 51-62. [17] I. Fukuda and M. Tsutsumi, On coupled Klein-Gordon-Schrödinger equations Ⅱ, J. Math. Analysis Applic., 66 (1978), 358-378. [18] I. Fukuda and M. Tsutsumi, On coupled Klein-Gordon Schrödinger equations Ⅲ-Higher order interaction, decay and blow-up, Math. Japonica, 24 (1979), 307-321. [19] I. Fukuda and M. Tsutsumi, On the Yukawa-coupled Klein-Gordon-Schödinger equations in three space dimensions, Proc. Japan Acad., 51 (1975), 402-405. [20] B. Guo and Y. Li, Attractor for dissipative Klein-Gordon-Schrödinger equations in $\bf{R}^3$, Journal of Differential Equations, 136 (1997), 356-377. [21] B. Guo and Y. Li, Attractor for the dissipative generalized Klein-Gordon-Schrödinger equations, J. Partial Differ. Equations, 11 (1998), 260-272. [22] B. Guo and Y. Li, Asymptotic smoothing effect of solutions to weakly dissipative Klein-Gordon-Schrödinger equations, J. Math. Anal. Appl., 282 (2003), 256-265. [23] Y. Han, On the Cauchy problem for the coupled Klein-Gordon-Schrödinger system with rough data, Discret. Contin. Dyn. Syst., 12 (2005), 233-242. [24] N. Hayashi, Global strong solutions of coupled Klein-Gordon-Schrödinger equations, Funkcialaj Ekvacioj, 29 (1986), 299-307. [25] N. Hayashi and W. Von Wahl, On the global strong solutions of coupled Klein-Gordon-Schrödinger equations, J. Math. Soc. Japan, 39 (1987), 489-497. [26] H. Lange and B. Wang, Regularity of the global attractor for the Klein-Gordon-Schrödinger equation, Math. Methods Appl. Sci., 22 (1999), 1535-1554. [27] H. Lange and B. Wang, Attractors for the Klein-Gordon-Schrödinger equation, J. Math. Phys., 40 (1999), 2445-2457. [28] Y. Li, Q. Shi, C. Wang and S. Wang, Well-posedness for the nonlinear Klein-Gordon-Schrödinger equations with heterointeractions, J. Math. Phys., 51 (2010), 032-102. [29] J. L. Lions, Quelques Métodes de Résolution des Problémes Aux Limites Non Linéaires, Dunod, Paris, 1969. [30] J. L. Lions, Controlabilité exacte, perturbations et Stabilisation de systèmes distribués, Tome 1, Masson, Paris, 1988. [31] J. L. Lions-E. Magenes, Problèmes Aux Limites Non Homogènes et Applications, Dunod, Paris, 1968, Vol. 1. [32] C. Miao and G. Xu, Global solutions of the Klein-Gordon-Schrödinger system with rough data in ${\mathbb{R}^{2 + 1}}$, J. Differ. Equ., 227 (2006), 365-405. [33] O. Goubet, A. Hakim and A. Mostafa, Regularity of the attractor for a coupled Klein-Gordon-Schrödinger system, Diff. Integal Equ., 16 (2003), 573-581. [34] M. Ohta, Stability of Stationary States for the Coupled Klein-Gordon-Schrödinger Equations, Nonlinear Analysis, Theory, Methods and Appl., 27 (1996), 455-461. [35] T. Ozawa and Y. Tsutsumi, Asymptotic behaviour of solutions for the coupled Klein-Gordon-Schrödinger equations, Adv. Stud. Pure Math., 23 (1994), 295-305. [36] H. Pecher, Global solutions of the Klein-Gordon-Schrödinger system with rough data, Differ. Int. Equ., 17 (2004), 179-214. [37] M. N. Poulou and N. M. Stavrakakis, Global attractor for a system of Klein-Gordon-Schrödinger type in all R, Nonlinear Anal., 74 (2011), 2548-2562. [38] M. N. Poulou and N. M. Stavrakakis, Uniform decay for a local dissipative Klein-Gordon-Schrödinger type system, Electron. J. Differential Equations, (2012), No. 179. 16pp. [39] A. Shimomura, Scattering theory for the coupled Klein-Gordon-Schrödinger equations in two space dimensions, J. Math. Sci. Univ. Tokyo, 10 (2003), 661-685. [40] A. Shimomura, Scattering theory for the coupled Klein-Gordon-Schrödinger equations in two space dimensions. Ⅱ, Hokkaido Math. J., 34 (2005), 405-433. [41] N. Tzirakis, The Cauchy problem for the Klein-Gordon-Schrödinger system in low dimensions below the energy space, Comm. Partial Differ. Equ., 30 (2005), 605-641. [42] B. Wang, Classical global solutions for non-linear Klein-Gordon-Schrödinger equations, Math. Methods Appl. Sci., 20 (1997), 599-616. [43] H. Yukawa, On the interaction of elementary particles Ⅰ, Proc. Physico-Math. Soc. Japan, 17 (1935), 48-57.
Example of a region where Conjecture 2 is satisfied.
Neighborhood $\hat{\omega}$ of $\overline{\Gamma(x^0)}$
 [1] Ahmed Y. Abdallah. Asymptotic behavior of the Klein-Gordon-Schrödinger lattice dynamical systems. Communications on Pure and Applied Analysis, 2006, 5 (1) : 55-69. doi: 10.3934/cpaa.2006.5.55 [2] Adriana Flores de Almeida, Marcelo Moreira Cavalcanti, Janaina Pedroso Zanchetta. Exponential stability for the coupled Klein-Gordon-Schrödinger equations with locally distributed damping. Evolution Equations and Control Theory, 2019, 8 (4) : 847-865. doi: 10.3934/eect.2019041 [3] Fábio Natali, Ademir Pastor. Orbital stability of periodic waves for the Klein-Gordon-Schrödinger system. Discrete and Continuous Dynamical Systems, 2011, 31 (1) : 221-238. doi: 10.3934/dcds.2011.31.221 [4] Marilena N. Poulou, Nikolaos M. Stavrakakis. Finite dimensionality of a Klein-Gordon-Schrödinger type system. Discrete and Continuous Dynamical Systems - S, 2009, 2 (1) : 149-161. doi: 10.3934/dcdss.2009.2.149 [5] Fábio Natali, Ademir Pastor. Stability properties of periodic standing waves for the Klein-Gordon-Schrödinger system. Communications on Pure and Applied Analysis, 2010, 9 (2) : 413-430. doi: 10.3934/cpaa.2010.9.413 [6] Caidi Zhao, Gang Xue, Grzegorz Łukaszewicz. Pullback attractors and invariant measures for discrete Klein-Gordon-Schrödinger equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 4021-4044. doi: 10.3934/dcdsb.2018122 [7] Ji Shu. Random attractors for stochastic discrete Klein-Gordon-Schrödinger equations driven by fractional Brownian motions. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1587-1599. doi: 10.3934/dcdsb.2017077 [8] Weizhu Bao, Chunmei Su. Uniform error estimates of a finite difference method for the Klein-Gordon-Schrödinger system in the nonrelativistic and massless limit regimes. Kinetic and Related Models, 2018, 11 (4) : 1037-1062. doi: 10.3934/krm.2018040 [9] Salah Missaoui, Ezzeddine Zahrouni. Regularity of the attractor for a coupled Klein-Gordon-Schrödinger system with cubic nonlinearities in $\mathbb{R}^2$. Communications on Pure and Applied Analysis, 2015, 14 (2) : 695-716. doi: 10.3934/cpaa.2015.14.695 [10] Ahmed Y. Abdallah, Taqwa M. Al-Khader, Heba N. Abu-Shaab. Attractors of the Klein-Gordon-Schrödinger lattice systems with almost periodic nonlinear part. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022006 [11] Zehan Lin, Chongbin Xu, Caidi Zhao, Chujin Li. Statistical solution and Kolmogorov entropy for the impulsive discrete Klein-Gordon-Schrödinger-type equations. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022065 [12] Pavlos Xanthopoulos, Georgios E. Zouraris. A linearly implicit finite difference method for a Klein-Gordon-Schrödinger system modeling electron-ion plasma waves. Discrete and Continuous Dynamical Systems - B, 2008, 10 (1) : 239-263. doi: 10.3934/dcdsb.2008.10.239 [13] E. Compaan, N. Tzirakis. Low-regularity global well-posedness for the Klein-Gordon-Schrödinger system on $\mathbb{R}^+$. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3867-3895. doi: 10.3934/dcds.2019156 [14] Salah Missaoui. Regularity of the attractor for a coupled Klein-Gordon-Schrödinger system in $\mathbb{R}^3$ nonlinear KGS system. Communications on Pure and Applied Analysis, 2022, 21 (2) : 567-584. doi: 10.3934/cpaa.2021189 [15] Yang Han. On the cauchy problem for the coupled Klein Gordon Schrödinger system with rough data. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 233-242. doi: 10.3934/dcds.2005.12.233 [16] P. D'Ancona. On large potential perturbations of the Schrödinger, wave and Klein–Gordon equations. Communications on Pure and Applied Analysis, 2020, 19 (1) : 609-640. doi: 10.3934/cpaa.2020029 [17] Boling Guo, Yan Lv, Wei Wang. Schrödinger limit of weakly dissipative stochastic Klein--Gordon--Schrödinger equations and large deviations. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2795-2818. doi: 10.3934/dcds.2014.34.2795 [18] Tetsu Mizumachi, Dmitry Pelinovsky. On the asymptotic stability of localized modes in the discrete nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - S, 2012, 5 (5) : 971-987. doi: 10.3934/dcdss.2012.5.971 [19] Xiaoyan Lin, Yubo He, Xianhua Tang. Existence and asymptotic behavior of ground state solutions for asymptotically linear Schrödinger equation with inverse square potential. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1547-1565. doi: 10.3934/cpaa.2019074 [20] Lirong Huang, Jianqing Chen. Existence and asymptotic behavior of bound states for a class of nonautonomous Schrödinger-Poisson system. Electronic Research Archive, 2020, 28 (1) : 383-404. doi: 10.3934/era.2020022

2020 Impact Factor: 1.916